First Objects

Otfried Cheong

February 18, 2012

1 Classes and objects

Objects are the basis of object-oriented program-
ming. In Scala, every piece of data is an ob-
ject. Each object has a type, such as Int, Double,
String, tuple, or Array[Int]. The type of an ob-
ject determines what you can do with the object.
When you use an object, you should think of the
object as a black box, and you need not know what
really happens inside the object. All you need to
know is what the object does, not how it imple-
ments its functionality.

A class defines a new type of object. You can
also think about a class as a “blueprint” for objects.
Once you define a class, you can create objects from
the blueprint.

2 Case classes

A common use of classes is to define objects with a
number of attributes. For instance:

e A point in the plane has an z-coordinate and
a y-coordinate. Depending on the application,
the coordinates could be integers, or floating-
point numbers.

e A date has a year, month, and day.

e A student object has (at least) a name, a stu-
dent number, and a major.

e A playing card (such as in Blackjack) has a suit
(clubs, spades, hearts, or diamonds) and a face
value (2,3,...,10, Jack, Queen, King, Ace).

In Scala, such a simple class is best implemented
as a case class:

scala> case class Point(x: Int, y: Int)
defined class Point

Point represents a two-dimensional point. It has
two fields, namely x and y. We can create Point
objects as follows:

scala> var p = Point(2, 5)
p: Point = Point(2,5)

This looks like a function call, and in fact it is a
call to the constructor for the Point class.

Once we have a Point object, we can access its
fields using dot-syntax:

scala> p.x

resO: Int = 2
scala> p.y
resl: Int = 5

Note that we cannot modify the fields of the
Point object:

scala> p.x = 7
<console>:10: error: reassignment to val

In other words, once a Point object has been cre-
ated, its fields cannot be modified. We say that
Point is immutable (unchangeable).

We can compare two Point objects using ==
and !=. Two case classes are equal if and only if all
their fields are equal.

scala> val q = Point(7, 19)
q: Point = Point(7,19)
scala> val r = Point(2, 5)
r: Point = Point(2,5)

scala> p == r
res2: Boolean = true
scala> p == q
res3: Boolean = false
scala> p != q
res4: Boolean = true

Let’s now look at the other examples from above:
A date object could be defined like this:

scala> case class Date(year: Int,
month: Int,
day: Int)

defined class Date

scala> val d = Date(2012, 2, 20)

d: Date = Date(2012,2,20)

scala> d.month

resb: Int = 2

scala> d.day

res6: Int = 20

A student object might look like this:

scala> case class Student(name: String,
id: Int, dept: String)

defined class Student

scala> val s = Student("Otfried",13,"CS")

s: Student = Student(Otfried,13,CS)

scala> s.id

res7: Int = 13

And a Blackjack card object could look like this:

scala> case class Card(face: String,
suit: String)

defined class Card

scala> val ¢ = Card("Ace", "Diamonds")

c: Card = Card(Ace,Diamonds)

scala> c.suit

res8: String = Diamonds

3 Immutable and mutable objects

An object whose state cannot change after it has
been constructed is called immutable. The methods
of an immutable object do not modify the state of
the object. In Scala, all number types, strings, and
tuples are immutable. The classes Point, Date,
Student, and Card we defined above are all im-
mutable.

If we want to define a mutable case class, we need
to put the var keyword in front of the field names:

scala> case class Point2(var x: Int,
var y: Int)

defined class Point2

scala> val p = Point2(3, 5)

p: Point2 = Point2(3,5)

scala> p.x =7

p.-x: Int =

scala> p

res9: Point2 = Point2(7,5)

7

Mutable objects can lead to tricky mistakes.
Consider the following code:

scala> val p = Point2(3, 5)
p: Point2 = Point2(3,5)
scala> val 9 = p

q: Point2 = Point2(3,5)
scala> q.x = 7

q.x: Int =

scala> q

res10: Point2 = Point2(7,5)

7

What is the value of p at this point? Surprisingly,
p has changed as well:

scala> p
resll: Point2 = Point2(7,5)

Arrays are of course mutable, and so the same
effect can appear for arrays:

scala> val A = Array(1, 2, 3, 4)
A: Array[Int] = Array(1, 2, 3, 4)
scala> val B = A

B: Array[Int]

scala> A(2) =
scala> B
resl: Array[Int] = Array(1l, 2, 99, 4)

= Array(1, 2, 3, 4)
99

Note that even though we have defined A as a val
variable, it is possible to change the contents of A.
The word val here only means that the meaning
of the name A will never change—A is always the
same array object. But what is in the array with
name A can change.

4 References and the heap

Why does this happen? To understand this, we
need to understand how variables store objects.

All Scala objects are stored in an area of the Scala
runtime system called the heap. Objects cannot
exist anywhere else.

A wariable is just a name for an object on the
heap. You can think about a variable as a reference
to the object on the heap. The reference uniquely
indicates the object on the heap. (If you learnt C,
you can think about this reference as a pointer. In
reality it may not really be a memory address.)

An assignment operation (as in val q = p or
val B = A above) only copies the reference. Af-
terwards, p and q contain a reference to the same
Point2 object on the heap, and B and A contain a
reference to the same array object.

So what happened in the examples above is that
we created a new name for an object on the heap.
p and q are in fact two different names for the same
Point2 object, and A and B are two names for the
same array object.

This problem can never happen for immutable
objects, and so it is preferable to use immutable
objects whenever that is possible.

5 null

A variable can also have the value null, which
means that it does not reference any object.
For efficiency reasons, variables of the types Int,
Byte, Short, Long, Double, Float, Char, Boolean,
and Unit cannot be null.

6 Local variables

The local variables of a method are stored inside
the method’s activation record (also called stack
frame). The activation record is created each time
the method is called. This method

def test(m: Int) {

val k = m + 27

val s = "Hello World"

val A = Array(s.length, k, m)
}

has four local variables, namely m, k, s, and A. (The
parameters of a method are local val variables,
with the only difference that the runtime system
automatically places a value in the variable when
the method is called.)

In this example, if test(13) is called, an acti-
vation record with space for the four variables is
created.

7 Garbage collection

Scala objects are garbage collected: If the runtime
system runs out of memory, it will check all the
objects on the heap. If an object no longer has
any reference pointing to it, the object is no longer
useful, and will be deleted. It is hard to predict
when garbage-collection will happen. If you run a
small program only, probably no garbage-collection
at all occurs.

Garbage collection allows the programmer not
to worry about the memory management. There
are other languages which do not provide an auto-
matic garbage collection. For example, in C++ the
programmer is responsible for the memory manage-
ment. It is common for C or C++ programs to con-
tain mistakes where objects are created but never
destroyed, and so more and more unused and un-
usable objects fill up the heap. Such a program is
said to contain a memory leak.

8 Arrays

Arrays are somewhat special objects—they are the
only object that allows you to store an unbounded
amount of information in a single object. (Scala
provides many other classes to store large amounts
of data efficiently and more conveniently than with
arrays. But all of those classes are implemented
internally using arrays or a large number of small
objects.)

Arrays have a fixed size, and so we have to know
the size of the array when we create the array ob-
ject. If we want to put more objects in an array

than the original array size allows, we need to cre-
ate a new array and copy the data from the old ar-
ray to the new one. The array methods ++ and :+
do this for us. The code below shows how we could
do it manually:

var A = new Array[Int](10)
// many computations ...
// now we need more space in A

val B = new Array[Int](20)

for (int i <- O until A.length)
B(i) = A(1)

A =B

// old A will be garbage-collected

Note that to do this “trick”, we had to declare A
as a var variable, otherwise the assignment A = B
would not have worked.

9 Using library classes

It is not necessary to declare classes that one wants
to use (unlike in Python, C, or C++) if one has
set up the library path correctly. The Scala com-
piler and run time system will look for the classes
automatically.

Documentation for the Scala library is here:
http://www.scala-lang.org/api/current/

Even though Scala is a new language, there are
already many libraries we can use, since Scala can
use Java libraries. There are thousands of classes
in various Java libraries, organized into packages.
You can find useful packages and reuse those. Doc-
umentation about the standard Java library classes
can be found in the Java API reference: http:
//download.oracle.com/javase/6/docs/api/

http://www.scala-lang.org/api/current/
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/

	Classes and objects
	Case classes
	Immutable and mutable objects
	References and the heap
	null
	Local variables
	Garbage collection
	Arrays
	Using library classes

