
Part I

Baseball Pennant Race

Pennant Race

Pennant Race: Example
Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
No, because Boston can win at most 91 games.

Another Example
Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!



Refining the Example
Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does
1. Boston wins both its games to get 92 wins
2. New York must lose both games; now both Baltimore and

Toronto have at least 92
3. Winner of Baltimore-Toronto game has 93 wins!

Abstracting the Problem
Given

1. A set of teams S
2. For each x ∈ S, the current number of wins wx

3. For any x, y ∈ S, the number of remaining games gxy
between x and y

4. A team z
Can z win the pennant?

Towards a Reduction
z can win the pennant if

1. z wins at least m games
1.1 to maximize z’s chances we make z win all its remaining

games and hence m = wz +
∑

x∈S gxz

2. no other team wins more than m games
2.1 for each x, y ∈ S the gxy games between them have to

be assigned to either x or y .
2.2 each team x 6= z can win at most m − wx − gxz

remaining games

Is there an assignment of remaining games to teams such that
no team x 6= z wins more than m − wx games?

Flow Network: The basic gadget
1. s: source
2. t: sink
3. x, y : two teams
4. gxy : number of games

remaining between x
and y .

5. wx : number of points
x has.

6. m: maximum number
of points x can win
before team of interest
is eliminated.
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Flow Network: An Example
Can Boston win?

Team Won Left NY Bal Tor Bos
New York 90 11 − 1 6 4
Baltimore 88 6 1 − 1 4
Toronto 87 11 6 1 − 4
Boston 79 12 4 4 4 −

1. m = 79 + 12 = 91:
Boston can get at
most 91 points.
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Constructing Flow Network

Notations
1. S: set of teams,
2. wx wins for each

team, and
3. gxy games left

between x and y .
4. m be the maximum

number of wins for
z,

5. and S′ = S \ {z}.

Reduction
Construct the flow network G as
follows

1. One vertex vx for each team
x ∈ S′, one vertex uxy for
each pair of teams x and y in
S′

2. A new source vertex s and
sink t

3. Edges (uxy , vx) and (uxy , vy)
of capacity∞

4. Edges (s, uxy) of capacity
gxy

5. Edges (vx, t) of capacity
equal m − wx

Correctness of reduction
Theorem
G ′ has a maximum flow of value g∗ = ∑

x,y∈S′ gxy if and only
if z can win the most number of games (including possibly tie
with other teams).

Proof of Correctness
Proof.
Existence of g∗ flow⇒ z can win pennant

1. An integral flow saturating edges out of s, ensures that
each remaining game between x and y is added to win
total of either x or y

2. Capacity on (vx, t) edges ensures that no team wins
more than m games

Conversely, z can win pennant⇒ flow of value g∗

1. Scenario determines flow on edges; if x wins k of the
games against y , then flow on (uxy , vx) edge is k and on
(uxy , vy) edge is gxy − k



Theorem
Theorem
Suppose that team z has been eliminated. Then there exists a
“proof” of this fact of the following form:

The team z can finish with at most m wins.
There is a set of teams Ŝ ⊂ S so that∑
s∈Ŝ

wx +
∑

{x,y}⊆Ŝ

gxy > m
∣∣∣Ŝ∣∣∣.

(And hence one of the teams in Ŝ must end with strictly more
than m wins.)

Certificate that z cannot win
If z cannot win, then maxflow has value less than g∗.
By max-flow-min-cut theorem, there is a cut (S,T) of
capacity α < g∗.
Let Ŝ be the set of teams x such that vx ∈ Ŝ.

Helper claim
Claim
For any two teams x and y for which the vertex uxy exists, we
have that uxy ∈ S if and only if both x and y are in Ŝ.

Proof...(
x /∈ Ŝ or y /∈ Ŝ

)
=⇒ uxy /∈ S

If x is not in Ŝ then vx is in T . But then, if uxy is in S the
edge (uxy → vx) is in the cut. However, this edge has infinite
capacity, which implies that (S,T) is not a minimum cut.

Helper claim proof continued
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x ∈ Ŝ and y ∈ Ŝ =⇒ uxy ∈ S
Assume x and y are in Ŝ, then vx and vy are in S. If uxy ∈ T
then consider the new cut formed by moving uxy to S. For the
new cut (S′,T ′) we have

c(S′,T ′) = c(S,T)− c
(
(s → uxy)

)
.



Proof
There are two type of edges in the cut (S,T): (i) (vx → t),
for x ∈ Ŝ, and (ii) (s → uxy) where at least one of x or y is
not in Ŝ. As such, the capacity of the cut (S,T) is

c(S,T) =
∑
x∈Ŝ

(m − wx) +
∑

{x,y}6⊂Ŝ

gxy

= m
∣∣∣Ŝ∣∣∣−∑

x∈Ŝ

wx +

g∗ −
∑

{x,y}⊆Ŝ

gxy

 .
However, c(S,T) < g∗, and it follows that

m
∣∣∣Ŝ∣∣∣−∑

x∈Ŝ

wx −
∑

{x,y}⊆Ŝ

gxy <= 0.
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