Finite Injury Priority Method

To each prog. P exists $x[P]$ s.t.: $x \in A \iff P^B$ accepts x

To each prog. Q exists $y[Q]$ s.t.: $y \in B \iff Q^A$ accepts y

Maintain lists (P,x) and (Q,y) with ‘candidate’ witnesses (P,x) active if simulation P^B on x still running; else inactive

E.g. $L_A = (P_1,x_1), (P_2,x_2), (P_3,x_3)$; $L_B = (Q_1,y_1), (Q_2,y_2)$.

- For each $n:=0,1,...$
 - Add entry (n,x) to list. For active (P,a) increasing in P
 - If P^B accepts a within $\leq n$ steps, set $A := A \cup \{a\}$
 and $y := 1 + \max\{y$, largest oracle query by P^B on $a\}$
 and make (P,a) inactive. For all (Q,b) with $Q > P$ do
 - replace (Q,b) with $(Q,y++)$ made active.
 - Add entry (n,y) to list. For all active (Q,b) in list:
Finite Injury Priority Method

Candidates for “\(y \in B \iff Q^A \) accepts \(y \)” change („injury“) but only a finite number of times:

- namely when some \(P < Q \) terminates („priority“) and, once settled, does satisfy the witness condition!

Both \(A, B \) are enumerated, hence semi-decidable.

- For each \(n := 0, 1, \ldots \)
 - Add entry \((n,x)\) to list. For active \((P,a)\) increasing in \(P \)
 - If \(P^B \) accepts \(a \) within \(\leq n \) steps, set \(A := A \cup \{a\} \)
 and \(y := 1 + \max\{ y, \text{largest oracle query by } P^B \text{ on } a \} \)
 and make \((P,a)\) inactive. For all \((Q,b)\) with \(Q > P \) do
 - replace \((Q,b)\) with \((Q,y++)\) made active.
 - Add entry \((n,y)\) to list. For all active \((Q,b)\) in list:
Priority Diagonalization: Trading with the Devil

- You have countably many coins
 - Devil takes one of them
 - and gives you two new ones,
 - Then repeat.

- How many coins do you ultimately own?

NONE!

Courtesy of Joel D. Hamkins
Partially Ordered Sets

Sacks (1964), ..., Soare (1980): detailed study of which posets arise as Turing degrees
Summary and Perspective

No prerequisites: just clear thinking! (and BF)

- Introduction to Diagonalization: Cantor, Barber
- Model of Computation, Computability
- Undecidability, Halting Problem, Rice’s Theorem
- Oracle Computation, Degrees of Uncomputability
- Time Hierarchy Theorem
- Relativization of the "P versus NP" question
- Post’s Question, Solution by Friedberg and Muchnik: Finite Injury Priority Method

Richard E. Ladner (1975) , Uwe Schöning

If $P \neq NP$, there exists problem
- not in P
- in NP
- but not NP-complete