
Lecture notes – CS492 – Spring 2008 – Andreas Holmsen

A generalization of Carathéodory’s theorem. One of the most fundamental theorems of
convexity is Carathéodory’s theorem. It states that the origin is contained in the convex
hull of a set S in d-dimensional Euclidean space if and only if the origin is contained
in a simplex spanned by points of S. Here we will prove a partitioned version of
Carathéodory’s theorem.

Theorem 1. Let A1, . . . ,Ad+1 be disjoint, non-empty, finite point sets in Rd such that
A1 ∪ ·· · ∪Ad+1 is in general position with respect to the origin. If the origin is con-
tained in conv(Ai∪A j) for all 1≤ i < j ≤ d +1, then the origin is contained in some
simplex S with |S∩Ai|= 1 for every 1≤ i≤ d +1.

Here the term “in general position with respect to the origin” means that any k-
tuple of points (1 ≤ k ≤ d) together with the origin span a k-dimensional simplex.
Equivalently, it means that the vectors spanned by any k-tuple are linearly independent.

OO

Figure 1: The set of points on the left are not in general position with respect to the origin since there
is a pair of points whose connecting segment pass through the origin. The set of points on the right,
however, are in general position with respect to the origin.

Let us first prove some special cases. For d = 1, Theorem 1 is trivial, so let us
consider the case d = 2. In this case we have a set of red points, a set of blue points,
and a set of green points, in the plane, which together are in general position with
respect to the origin. Theorem 1 claims that if the origin is contained in the convex
hull of the red and blue points, the red and green points, and the blue and green points,
then there is a triangle with one red vertex, one blue vertex, and one green vertex which
contains the origin. (Check that Theorem 1 holds for the point sets above. In fact, in
the plane it doesn’t really matter whether or not the points are in general position with
respect to the origin).

Now to prove Theorem 1 for d = 2. Let us first note that if the origin is contained
in the convex hull of, say, the red and blue points, then there is a triangle spanned by
the red and blue points, that contains the origin, and which has at least one red vertex
and one blue vertex (Excercise 1a). Let us assume that there is a red point r and blue
points b1 and b2 such that the triangle rb1b2 contains the origin. Let Li be the line that
passes through bi and the origin (i = 1,2). The point r is contained in a unique open
quadrant, Q, defined by the lines L1 and L2. (See the figure below). Let us suppose,
for a contradiction, that there is no red/blue/green triangle that contains the origin. It is
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not hard to see (really?) that if there is a green point g that is not contained in Q, then
one of the triangles rb1g or rb2g will contain the origin. So every green point must be
contained in Q. Now, for any green point g, the triangle gb1b2 contains the origin. So,
by the same argument as above, all the red points must be contained in Q. This means
that the convex hull of the red and the green points is contained in Q, and therefore it
cannot contain the origin. This contradiction establishes Theorem 1 for d = 2.
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Figure 2: The lines L1 and L2 cut the plane into four quadrants. If there is no red/blue/green triangle
containing the origin, then the green points must be contained in the open quadrant that contains the red
point.

As we see, the case d = 2 is quite simple. Why can’t we just apply the same proof
for d > 2 ? Well, it is in fact not clear what to do. Let us illustrate this by considering
the case d = 3. It is true that if the origin is contained in the convex hull of a set of
red and blue points, then there is a tetrahedron spanned by the red and blue points,
that contains the origin, and which has a at least one red vertex and one blue vertex
(Excercise 1b). It is here things become more complicated: The tetrahedron could
have one red vertex and three blue vertices, or, it could have two red vertices and two
blue vertices. If we accept the situation that we need to consider both cases (and even
more as d grows!), we are still stuck with the trouble of finding an analogue of the lines
L1 and L2. At this point it should be clear that it will be difficult to prove Theorem 1,
for arbitrary d > 2, by naively mimicking the proof of the planar case. It turns out that
one way to prove Theorem 1 is to give a different higher dimensional interpretation of
the fact that in the plane we can find a red-blue triangle that contains the origin (this
is essentially Lemma 2, below). But before we get to that we will reformulate the
problem in spherical terms.

Let Sd−1 denote the (d− 1)-dimensional unit sphere in Rd centered at the origin.
We say that a finite point set A ⊂ Sd−1 is in general position if any 1 ≤ k ≤ d points
of A span a k-dimensional linear subspace of Rd . This is the spherical equivalent to
saying that a point set is in general position with respect to the origin.

The fact that a point set is in general position on Sd−1 implies that any d points
of A are contained in some open hemisphere H ⊂ Sd−1. For 0 ≤ k ≤ d, it makes
sense to speak of a k-simplex of A, i.e. the spherical convex hull of some k +1 points
of A, which is denoted by convS. More generally, if X is contained in some open
hemisphere, then convS X is the intersection of all open hemispheres that contain X .
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Notice that there is a fundamental difference between the spherical convex hull and the
regular affine convex hull: We only defined the spherical convex hull for point sets that
are contained in some open hemisphere. The connection between the affine convex
hull and the spherical convex hull is the following: A set of points in general position
on Sd−1 contain the origin in their affine convex hull if and only if the set of points
is not contained in any open hemisphere. So a set of points on Sd−1 that contains
the origin in its affine convex hull is precisely the kind which do not have a spherical
convex hull!

It is also important to notice the following: Given a point set in Rd which is in
general position with respect to the origin, we can project each point from the origin
to a unique point on the unit sphere to obtain a point set on Sd−1. The resulting point
set will be in general position on the Sd−1. Moreover, a subset of the original points in
Rd contains the origin in its convex hull if and only if the corresponding point set on
Sd−1 is not contained in any open hemisphere.
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Figure 3: A point set in R2 in general position with respect to the origin (on the left) can be projected to
a point set in general position on S1 (on the right). The triangles in R2 that contain the origin correspond
to triples of points on S1 that are not contained in an open halfcircle.

It should now be clear that to prove Theorem 1, it is enough to prove it for point
sets that are in general position on Sd−1. Here is the main lemma that we need.

Lemma 2. For d ≥ 2, let A1, . . . ,Ad be disjoint, non-empty, finite point sets in Sd−1

such that A1∪ ·· · ∪Ad is in general position, and suppose Ai∪A j is not contained in
any open hemisphere, for any 1≤ i < j≤ d. Let U denote the collection of all (d−1)-
simplices spanned by the d-tuples consisting of a single point from each Ai. If U does
not cover Sd−1, then for some 1 ≤ i ≤ d there exists an open hemisphere H such that
Ai ⊂ H ⊂U.

Before proving Lemma 2, let us consider some cases for small d. For d = 2 this is
a statement concerning red and blue points on the circle. This case is quite simple and
in fact it was implicitly proved above. So let us consider the case d = 3.

Here we have red, blue, and green points in general position on S2. The set U now
consists of spherical triangles with a vertex of each color. Clearly the union of these
triangles is a closed set, and if U does not cover S2, then U must have a boundary. The
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boundary of U consists of pieces of arcs (spherical 1-simplices) connecting points of
distinct colors.

Let us consider a point p on the boundary of U which lies in the relative interior
of a unique arc with endpoints of distinct colors. Clearly such a point must exist.
(Excercise 2). Let us suppose that r and b are the endpoints of the arc containg p,
where r is red and b is blue. The points r and b are contained in a unique great circle
H which bounds two opposite open hemispheres H+ and H−. We claim that it is
impossible that there are green points in both H+ and H−. If there are green points
g+ ∈ H+ and g− ∈ H−, then the spherical triangles rbg+ and rbg− lie in opposite
closed hemispheres, share the common arc rb, and they both belong to U . But clearly
this cannot happen since p is a boundary point. So we may assume that the green
points are contained in H+.

Next we show that there must at least one red point and one blue point in H−.
Suppose there were no red points in H−. Since there already exists a red and a blue
point on H this would mean that the remaining red points (if there are any!) must lie in
H+. But then the red and the green points are contained in H+∪H, and by the general
position assumption we can find an open hemisphere that contains all the red and green
points. The same argument applies for the blue points. So let r′ be a red point and b′
a blue point contained in H−, and fix a green point g. Since g ∈ H+ and r′,b′ ∈ H− it
follows that the arcs gr′ and gb′ must cross the great circle H, and we define the points
r∗ = gr′ ∩H and b∗ = gb′ ∩H. It follows from the definition of the points r∗ and b∗
that the arc rb∗ is contained in the triangle grb′. Similarly, the arc r∗b is contained in
gr′b, and the arc r∗b∗ is contained in gr′b′.
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Figure 4: On the left: The arcs gr′ and gb′ intersect the great circle H, which gives us the points r∗
and b∗. On the right: The arcs rb,rb∗,r∗b,r∗b∗ cover H.

Now we make a crucial observation. We have defined four arcs on H ∼= S1:

rb, rb∗, r∗b, r∗b∗,

and these arcs form the edges of a cycle (S1). Among these four arcs, p is contained
only in the arc rb, which follows from the fact that p is a boundary point. This implies
that the arcs rb,rb∗,r∗b,r∗b∗ must cover H. (Excercise 3). Therefore the triangles
grb,grb∗,gr∗b,gr∗b∗ will cover H+, and we are done.
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The proof of Lemma 2 for d > 2 is a straightforward generalization of the proof
given above. The key is the crucial observation in the end, and it so happens that this
observation has a natural extension which is stated as Claim 3, below.

For d≥ 2, let K be a finite collection of (d−1)-simplices on Sd−1. A point p∈ Sd−1

will be called generic with respect to K if and only if p is not contained in any of the
faces of the simplices of K, of dimension less than d−1. In other words, p is generic
with respect to K if and only if for each simplex of S ∈ K, p is either in the relative
interior of S, or disjoint from S. (We may omit ‘with respect to K’ when it is clear from
the situation what K is). For a generic point p, let the order of p denote the number of
(d−1)-simplices of K which contain p in their relative interiors.

Claim 3. For k≥ 2, let B = {a1, . . . ,ak,b1, . . . ,bk} be distinct points in general position
on Sk−1. Let K denote the collection of the (k− 1)-simplices formed by k-tuples of B
with no repeated indices. Either the order of every generic point is even, or the order
of every generic point is odd.

Proof. One way to prove this follows by noticing that K is a continuous image of the
boundary of the k-dimensional cross-polytope, Xk, and that ∂Xk ∼= Sk−1. Thus K is
defined by a continuous map f : Sk−1 → Sk−1, and the claim follows by considering
the (Brouwer) degree of f . But here we also give a direct argument.

Let K<(k−1) be the union of faces of the simplices of K, of dimension less than
k−1. Then Sk−1 \K<(k−1) is a collection of finitely many open cells, and any pair of
generic points can be connected by a path in Sk−1 that does not pass through any faces
of dimension less than k− 2. Thus it suffices to consider how the order changes as
we pass through a face of dimension k− 2. For any face F of dimension k− 2, there
are preciesly two points ai and bi (for some 1 ≤ i ≤ k) such that convS(F ∪ ai) and
convS(F ∪ bi) are (k− 1)-simplices of K. Let H be the unique great (k− 2)-sphere
that contains F . If ai and bi are contained in the same open hemisphere bounded by
H, then the order changes by ±2 as we pass through F . If ai and bi are contained in
opposite open hemispheres bounded by H, then the order stays the same as we pass
through F .

Proof of Lemma 2. Suppose U does not cover Sd−1. Since U is the union of finitely
many simplices, U is closed and has a boundary, which is a subset of finitely many
(d − 2)-faces of simplices of K. Let p be a point of the boundary of U with the
property that it is contained in the relative interior of a unique (d− 2)-face. Clearly
such a point must exist, so suppose p is contained in the relative interior of the unique
(d−2)-face, F = convS {a1, . . . , ad−1}, where ai ∈ Ai.

There is a unique great (d−2)-sphere, H, which contains the points a1, . . . , ad−1,
which bounds disjoint open hemispheres H+ and H−. If there exists points x+ ∈
Ad∩H+ and x− ∈ Ad∩H−, then p belongs to the (d−1)-simplices spanned by x+∪F
and x−∪F , which have disjoint relative interiors, share the common face F , and belong
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to U . This is impossible since p is a boundary point of U , so we may assume that
Ad ⊂ H−.

For every 1≤ i≤ d−1, we must have Ai∩H+ 6= /0. If not, there exists an Ai such
that Ai∪Ad ⊂ H ∪H−, which, by the general position assumption, means that Ai∪Ad
is contained in some open hemisphere. Pick points a ∈ Ad ⊂ H− and pi ∈ Ai ∩H+,
and let bi = H ∩ convS {pi,a}. It follows from the general position assumption that
the set of points J = {a1, . . . , ad−1, b1, . . . , bd−1} is in general position on H. Let K
denote the set of (d−2)-simplices spanned by the (d−1)-tuples of J with no repeated
indices. By our choice of p, it follows that p is a generic point in H with respect to K.

Let T 6= F be a (d− 2)-simplex of K. It follows from how we defined the points
of J, that any point in the relative interior of T is contained in the relative interior of a
(d−1)-simplex spanned by U , for instance,

x ∈ int convS{a1,a2,b3,b4, . . . ,bd−1} ⊂ int convS{a,a1,a2, p3, p4, . . . , pd−1} ⊂U.

This means that p is covered only once (in H) by the (d− 2)-simplices of K. So by
Claim 3, with k = d−1, the simplices of K must cover H, which implies that H ⊂U .
Therefore

H− ⊂
[

X∈K

convS (a∪X)

Most of the work is done now that we have established Lemma 2, and it will be
quite easy to prove Theorem 1. Just remember that we are proving the spherical ver-
sion of Theorem 1, so rather dealing with sets A1, . . . , Ad+1 in Rd in general position
with respect to the origin, we assume that the sets are in general position on Sd−1.

Proof of Theorem 1. The sets A1, . . . ,Ad satisfy the conditions of Lemma 2, and they
define the set U . If there exists a point a ∈ Ad+1 such that −a∩U 6= /0, then −a is
contained in some (d−1)-simplex, S of U , which means that the simplex spanned by
a∪ S contains the origin. On the other hand, if −Ad+1 ∩U = /0 then U cannot cover
Sd−1 so by Lemma 2 there is some 1 ≤ i ≤ d and an open hemisphere H such that
Ai∪Ad+1 ⊂ H ⊂U , which is a contradiction.
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