
Algorithms Lecture 28: Adversary Arguments [Sp’10]

still open for other values of n.’
There are non-trivial non-evasive graph properties, but all known examples are non-monotone. One

such property—‘scorpionhood’—is described in an exercise at the end of this lecture note.

28.7 Finding the Minimum and Maximum

Last time, we saw an adversary argument that finding the largest element of an unsorted set of n
numbers requires at least n− 1 comparisons. Let’s consider the complexity of finding the largest and
smallest elements. More formally:

Given a sequence X = 〈x1, x2, . . . , xn〉 of n distinct numbers, find indices i and j such that
x i =min X and x j =max X .

How many comparisons do we need to solve this problem? An upper bound of 2n− 3 is easy: find the
minimum in n− 1 comparisons, and then find the maximum of everything else in n− 2 comparisons.
Similarly, a lower bound of n− 1 is easy, since any algorithm that finds the min and the max certainly
finds the max.

We can improve both the upper and the lower bound to d3n/2e − 2. The upper bound is established
by the following algorithm. Compare all bn/2c consecutive pairs of elements x2i−1 and x2i , and put the
smaller element into a set S and the larger element into a set L. if n is odd, put xn into both L and S.
Then find the smallest element of S and the largest element of L. The total number of comparisons is at
most
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For the lower bound, we use an adversary argument. The adversary marks each element + if it might
be the maximum element, and − if it might be the minimum element. Initially, the adversary puts both
marks + and − on every element. If the algorithm compares two double-marked elements, then the
adversary declares one smaller, removes the + mark from the smaller element, and removes the − mark
from the larger one. In every other case, the adversary can answer so that at most one mark needs to be
removed. For example, if the algorithm compares a double marked element against one labeled −, the
adversary says the one labeled − is smaller and removes the − mark from the other. If the algorithm
compares to +’s, the adversary must unmark one of the two.

Initially, there are 2n marks. At the end, in order to be correct, exactly one item must be marked +
and exactly one other must be marked −, since the adversary can make any + the maximum and any −
the minimum. Thus, the algorithm must force the adversary to remove 2n− 2 marks. At most bn/2c
comparisons remove two marks; every other comparison removes at most one mark. Thus, the adversary
strategy forces any algorithm to perform at least 2n− 2− bn/2c= d3n/2e − 2 comparisons.

28.8 Finding the Median

Finally, let’s consider the median problem: Given an unsorted array X of n numbers, find its n/2th largest
entry. (I’ll assume that n is even to eliminate pesky floors and ceilings.) More formally:

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the index m such that xm is the
n/2th largest element in the sequence.

To prove a lower bound for this problem, we can use a combination of information theory and two
adversary arguments. We use one adversary argument to prove the following simple lemma:
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