
CS206 The runtime stack

Where do variables live? The local variables of a method live
inside the method’s activation record (also called stack frame).

(But all objects are on the heap. The stack frame only stores
the variable names and references to the heap.)

When a method starts executing, its stack frame is created.
When the method returns, its stack frame is destroyed.

The runtime system (JVM) keeps stack frames on a stack.

The top of the stack is the stack from of the currently
executing method. A stack is suitable for storing stack frames,
since the start and return time of methods form a nesting
structure (like balanced parentheses).

(This stack is built into the JVM! It is not a Scala object—we
cannot access the stack of activation records ourselves.)

CS206 Example

def first(n: Int) {

second(n)

second(n * n)

}

def second(m: Int) {

three(m)

three(m+1)

three(m+2)

}

def three(z: Int) {

Thread.dumpStack()

}

first(13)

first

n: 13

second

m: 169

three

z: 170

example1.scala, example2.scala

CS206 Recursion

The runtime stack makes recursion possible.

def factorial(n : Int) : Long = {

if (n <= 1) // base case

1

else

n * factorial(n - 1)

}

factorial

n: 3

factorial

n: 2

factorial

n: 1

CS206 Exceptions

When a runtime error occurs, the program terminates with an
exception message:

scala> val a = 3

a: Int = 3

scala> a / 0

java.lang.ArithmeticException: / by zero

scala> val s = "abc"

s: java.lang.String = abc

scala> s.toInt

java.lang.NumberFormatException:

For input string: "abc"

scala> val F = scala.io.Source.fromFile("test.txt")

java.io.FileNotFoundException: test.txt

(No such file or directory)



CS206 Handling exceptions

If an exception occurs inside a try clause, execution continues
with a matching exception handler in the catch clause:

val str = readLine("Enter a number> ")

try {

val x = str.toInt

printf("You said: %d\n", x)

} catch {

case e: NumberFormatException =>

printf("’%s’ is not a number\n", str);

}

Exceptions keep the interface of the method toInt clean.
(Compare the C function strtol.)

catch1.scala

CS206 Catching across function calls

def test(s: String): Int = {

(s.toDouble * 100).toInt

}

def show(s: String) {

try {

println(test(s))

} catch {

case e: NumberFormatException =>

println("Incorrect input")

}

}

scala> show("123.456")

12345

scala> show("123a456")

Incorrect input
catch2.scala

CS206 Handling exceptions

If an exception occurs, the normal flow of control is
interrupted. Execution continues in the innermost catch block
with a matching exception handler.

def f(n: Int) = g(n)

def g(n: Int) {

val m = 100 / n

printf("The result is %d\n", m)

}

try {

f(n)

} catch {

case e: ArithmeticException

=> println("I can’t handle this value!")

} except1.scala

CS206 Throwing exceptions

When we detect an error in the input data, we can throw an
exception ourselves:

if (n < 0)

throw new IllegalArgumentException

Exceptions are often used to detect errors in the input data.

We can catch the exception at a suitable place in the program
and print an error message, or handle the problem in some
other way.

The exception may happen deep inside several function calls:

Welcome to KAIST SuperCalculator!

> 3 + 5 * (12.0 + (4 + 6.0 * @))

Syntax error

except2.scala



CS206 Throwing exceptions

Exceptions are Scala objects derived from Exception:

class SyntaxError extends Exception

When we detect a situation that we cannot handle locally, we
can throw an exception:

if (!tok.token.isSymbol(")"))

throw new SyntaxError

Exceptions are normal objects and can have additional fields
and methods.

calculator3.scala


