
CS206 Sorting

Sorting problem: Given a list A with n integers. Rearrange
them into non-decreasing order.

The sorting problem is perhaps the most fundamental problem
in algorithms.

Instead of integers we can thing about any kind of element
that can be compared (Double, String). In other words, we
require a total order on the elements.

There are many direct applications of sorting (catalogs,
reports, file listings, etc.)

CS206 Sorting as a tool

There are also many indirect applications of sorting. For
instance, algorithms can often be made faster by first sorting
the data.

def hasDuplicates(L: List[Int]): Boolean = {

var p = L.sorted

while (p != Nil && p.tail != Nil) {

if (p.head == p.tail.head)

return true

p = p.tail

}

false

}

Iterative version

CS206 Insertion Sort

def insert(L: List[Int], x: Int): List[Int] = {

L match {

case Nil => List(x)

case y::ys => if (x < y) x :: L

else y :: insert(ys, x)

}

}

def insertionSort(L:List[Int]): List[Int] = {

L match {

case Nil => Nil

case x :: xs => insert(insertionSort(xs), x)

}

}

Inserting an element into a sorted list is easy.

CS206 Selection Sort

Find the minimum from the list, recursively sort the rest.

def select(L: List[Int]): (Int, List[Int]) = {

L match {

case List(x) => (x, Nil)

case x :: xs => val (y, ys) = select(xs)

if (x < y) (x, xs) else (y, x :: ys)

}

}

def selectionSort(L:List[Int]): List[Int] = {

if (L.isEmpty) Nil

else {

val (x, xs) = select(L)

x :: selectionSort(xs)

}

}



CS206 In-place insertion sort

When the data is in an array, we can sort it in-place, meaning
that we need no extra memory for the sorting.

def insertionSort(A: Array[Int], last: Int) {

if (last > 0) {

insertionSort(A, last - 1)

val x = A(last)

var i = last

while (i > 0 && x < A(i-1)) {

A(i) = A(i-1)

i = i-1

}

A(i) = x

}

}

CS206 Iterative version

We can easily remove the recursion:

def insertionSort(A: Array[Int]) {

for (last <- 1 until A.length ) {

// A(0..last-1) already sorted

val x = A(last)

var i = last

while (i > 0 && x < A(i-1)) {

A(i) = A(i-1)

i = i-1

}

A(i) = x

}

}

CS206 Bubble Sort

Like in Insertion Sort, we bring the largest element to the top.

def bubbleSort(A: Array[Int]) {

for (last <- A.length - 1 until 0 by -1) {

for (j <- 0 until last) {

if (A(j) > A(j+1)) {

val t = A(j); A(j) = A(j+1); A(j+1) = t

}

}

}

}

Bubble-up phase

If nothing happens during a bubble phase, we are done!

CS206 Bubble sort with early termination

We stop when nothing happens in one phase.

def bubbleSort(A: Array[Int]) {

for (last <- A.length - 1 until 0 by -1) {

var flipped = false

for (j <- 0 until last) {

if (A(j) > A(j+1)) {

val t = A(j); A(j) = A(j+1); A(j+1) = t

flipped = true

}

}

if (!flipped)

return

}

}



CS206 Merge-Sort

Let us try divide and conquer:
1. Split the problem into smaller instances.
2. Recursively solve the subproblems.
3. Combine the solutions to solve the original problem.

def mergeSort(L: List[Int]): List[Int] = {

if (L.length > 1) {

val m = L.length / 2

val L1 = mergeSort(L take m)

val L2 = mergeSort(L drop m)

merge(L1, L2) // combine solutions

} else

L

}

CS206 Merging

We are given two sorted lists L1 and L2, and we wish to
combine them into one sorted list L.

def merge(L1: List[Int], L2: List[Int]): List[Int] = {

val L = new ListBuffer[Int]

var A = L1; var B = L2

while (A.nonEmpty && B.nonEmpty) {

if (A.head < B.head) {

L += A.head; A = A.tail

} else {

L += B.head; B = B.tail

}

}

L ++= A; L ++= B

L.toList

}

CS206 Merge-Sort — Time Analysis

Merging takes O(n) time.

Let T (n) be the time taken by Merge-Sort for n elements.
Then T (1) = O(1) and

T (n) = 2T (n/2) +O(n)

The solution is O(n log n).

CS206 Quick-sort

Divide and conquer:
1. Split the problem into smaller instances.
2. Recursively solve the subproblems.
3. Combine the solutions to solve the original problem.

In Merge-Sort, the divide step is trivial, and the combine step
is where all the work is done.

In Quick-Sort, the combine step is trivial, and all the work is
done in the divide step:
1. If L has less than two elements, return. Otherwise, select a

pivot p from L. Split L into three lists S, E, and G, where
• S stores the elements of L smaller than x,
• E stores the elements of L equal to x, and
• G stores the elements of L greater than x.

2. Recursively sort S and G.
3. Form result by concatenating S, E, and G in this order.



CS206 Quick-Sort

def quickSort(L: List[Int]): List[Int] = {

if (L.length > 1) {

val p = L((math.random * L.length).toInt)

val S = quickSort(L filter (_ < p))

val E = L filter (_ == p)

val G = quickSort(L filter (_ > p))

S ::: E ::: G

} else

L

}

CS206 Quick-Sort Analysis

The running time depends strongly on the choice of the pivot.

In the worst case, it is O(n2).

In the best case, it is O(n log n).

If the pivot is selected randomly, the expected running time is
O(n log n).

Quick-Sort can be implemented in-place (using one array only).


