
CS206 Sets

A Set is an abstract data type representing an unordered
collection of distinct items.

Sets appear in many problems: All the words used by
Shakespeare. All correctly spelled words. All prime numbers.
All the pixels of the same color that should be flooded in
flood-fill.

We could represent a set as an array or a list, but that is not
natural (and often not efficient): Lists are ordered sequences of
not necessarily distinct elements.

scala> val s = Set(2, 3, 5, 7, 9)

s: scala.collection.immutable.Set[Int] =

Set(9, 5, 2, 7, 3)

Empty set: Set()

CS206 Sets

Sets are unordered and elements are distinct:

scala> val s2 = Set(9, 9, 5, 7, 3, 5, 3, 2)

s2: Set[Int] = Set(9, 5, 2, 7, 3)

scala> s == s2

res3: Boolean = true

Adding and removing elements:

scala> s + 11

res0: Set[Int] = Set(11, 9, 5, 2, 7, 3)

scala> s - 6

res1: Set[Int] = Set(9, 5, 2, 7, 3)

scala> s - 5

res2: Set[Int] = Set(9, 2, 7, 3)

scala> s + 7

res3: Set[Int] = Set(9, 5, 2, 7, 3)

CS206 Set operations

The standard set operations have operators:

• union s1 union s2

• intersection s1 intersect s2

• difference s1 diff s2

• is x in s? s contains x

• is s1 subset of s2? s1 subsetOf s2

CS206

scala> val A = (1 to 10).toSet

A: Set[Int] = Set(8, 4, 9, 5, 10, 6, 1, 2, 7, 3)

scala> val B = (1 to 10 by 2).toSet

B: Set[Int] = Set(9, 5, 1, 7, 3)

scala> val C = (1 to 5).toSet

C: Set[Int] = Set(4, 5, 1, 2, 3)

scala> (B subsetOf A, C subsetOf B, C subsetOf A)

res5 = (true,false,true)

scala> A diff B

res6: Set[Int] = Set(8, 4, 10, 6, 2)

scala> B union C

res7: Set[Int] = Set(4, 9, 5, 1, 2, 7, 3)

scala> B intersect C

res8: Set[Int] = Set(5, 1, 3)

CS206 A simple spell checker

val F = scala.io.Source.fromFile("words.txt")

val words = F.getLines().toSet

while (true) {

val w = readLine("Enter a word> ").trim

if (w == "")

sys.exit()

if (words contains w)

println(w + " is a word")

else

printf("Error: %s is not a word\n", w)

}

CS206 Applications

• A spell checker.
(Use set of correctly spelled words.)

• Measuring similarity between texts.
(Consider set of words of each text, look at the size of their
intersection and union.)

• Computing prime numbers.
(Sieve of Erathosthenes).

• Remembering visited positions in a maze.

CS206 Mutable Sets

Scala also provides a mutable Set type:
scala> val S =

scala.collection.mutable.Set(1, 2, 3, 4)

S: scala.collection.mutable.Set[Int] =

Set(2, 1, 4, 3)

scala> S += 9

res0: S.type = Set(9, 2, 1, 4, 3)

scala> S += 13

res1: S.type = Set(9, 2, 1, 4, 13, 3)

scala> S -= 2

res2: S.type = Set(9, 1, 4, 13, 3)

CS206 Maps

Let’s add variables to our simple calculator.
A variable should store a number.

> A = 7

==> A = 7

> 3 * (A + 5)

==> 36

CS206 Data type “Map”

We need a data structure to store pairs of (variable name,
variable value), that is (String, Double).

It should support the following operations:
• insert a new variable definition (given name and value),
• find a variable value, given its name

This abstract data type is called a map (or dictionary).
A map implements a mapping from some key type to some
value type.

CS206 Scala maps

A Scala map implements the trait Map[K,V].
We can think of a map as a container for (K,V) pairs.

scala> val m1 = Map(("A",3), ("B",7))

m1: scala.collection.immutable.Map[String,Int] =

Map((A,3), (B,7))

However, Scala provides a nicer syntax to express the mapping:

scala> val m = Map("A" -> 7, "B" -> 13)

m: scala.collection.immutable.Map[String,Int] =

Map((A,7), (B,13))

CS206 Querying maps

scala> val m = Map("A" -> 7, "B" -> 13)

scala> m("A")

res1: Int = 7

scala> m("C")

java.util.NoSuchElementException: key not found: C

scala> m contains "C"

res2: Boolean = false

scala> m contains "A"

res3: Boolean = true

scala> m.getOrElse("A", 99)

res4: Int = 7

scala> m.getOrElse("C", 99)

res5: Int = 99

CS206 Updating maps

scala> val m = Map("A" -> 7, "B" -> 9)

m: Map[String,Int] = Map((A,7), (B,9))

scala> m + ("C" -> 13)

res0: Map[String,Int] = Map((A,7), (B,9), (C,13))

scala> m - "A"

res1: Map[String,Int] = Map((B,9))

scala> m - "C"

res2: Map[String,Int] = Map((A,7), (B,9))

scala> m + ("A" -> 99)

res3: Map[String,Int] = Map((A,99), (B,9))

CS206 Mutable maps

We can also use mutable maps:

scala> import scala.collection.mutable.Map

scala> val m = Map("A" -> 7, "B" -> 9)

m: Map[String,Int] = Map(B -> 9, A -> 7)

scala> m += ("C" -> 13)

res0: m.type = Map(C -> 13, B -> 9, A -> 7)

scala> m -= "A"

res1: m.type = Map(C -> 13, B -> 9)

scala> m("A") = 19

scala> m("B") = 99

scala> println(m)

Map(C -> 13, A -> 19, B -> 99)

CS206 Variables in our calculator

object Calculator {

var variables = Map[String, Double]()

// ...

In parseItem:
if (variables contains t.text)

variables(t.text)

else

throw new SyntaxError(startPos,

"Undefined variable: " + t.text)

CS206 Concordance

1: Friends, Romans, countrymen, lend me your ears;
2: I come to bury Caesar, not to praise him.
3: The evil that men do lives after them;
4: The good is oft interred with their bones;
5: So let it be with Caesar. The noble Brutus
6: Hath told you Caesar was ambitious:
7: If it were so, it was a grievous fault,
8: And grievously hath Caesar answer’d it.
9: Here, under leave of Brutus and the rest–
10: For Brutus is an honourable man;
11: So are they all, all honourable men–
12: Come I to speak in Caesar’s funeral.
13: He was my friend, faithful and just to me:
14: But Brutus says he was ambitious;
15: And Brutus is an honourable man.
16: He hath brought many captives home to Rome
17: Whose ransoms did the general coffers fill:
18: Did this in Caesar seem ambitious?

A : 7,24

AFTER : 3

ALL : 11,11,23,30

AM : 29

AMBITION : 20,25

AMBITIOUS : 6,14,18,21,26

AN : 10,15,22,27

AND : 8,9,13,15,22,27

ANSWER’D : 8

ARE : 11

....

WHOSE : 17

WITH : 4,5,33,34

WITHHOLDS : 31

WITHOUT : 30

YET : 21,26

YOU : 6,23,30,31

YOUR : 1

A concordance lists all the words in a text with the line
numbers where it appears.

CS206 Building a concordance

1. Create an empty map.
2. Scan the text word by word. For each word, look it up in

the map.
(a) If it does not yet appear, add it with the current line

number.
(b) If it already appears, add the current line number to its

value.
3. Print out the map.

CS206 Concordance

var concordance = Map[String, String]()

var lineNum = 0

for (line <- F.getLines()) {

lineNum += 1

println(lineNum + ":\t" + line);

val words = line.split("[,:;.?!-]+") map

(_.toUpperCase)

for (word <- words) {

if (concordance contains word) {

val lns = concordance(word)

concordance += (word -> (lns +","+ lineNum))

} else {

concordance += (word -> ("" + lineNum))

}

}

}

CS206 Printing the map

for ((word, lns) <- concordance)

printf("%20s: %s\n", word, lns)

But keys appear in some “random” order.

Scala provides several Map implementations: HashMap,
TreeMap, ListMap.

All implement the Map trait, but their behavior and the running
times are not the same.

The power of abstract data types: We can easily switch
between different implementations.

CS206 Duplicated line numbers

var concordance = scala.collection.immutable.

TreeMap[String, List[Int]]()

var lineNumber = 0

for (line <- F.getLines()) {

val words = line.split("[,:;.?!-]+")

map (_.toUpperCase)

for (word <- words) {

val lns = concordance.getOrElse(word, Nil)

if (lns == Nil || lns.head != lineNumber)

concordance += (word -> (lineNumber :: lns))

}

}

for ((word, lns) <- concordance)

println(word +": "+ lns.reverse.mkString(","))

