
CS206 The Josephus Game

Given n player sitting in a circle, and a number m.

A hot potato starts at player 1, and is passed around m times.
The player holding the potato then is eliminated, the next
player gets the potato, and the game continues until only one
player is left.

n = 6, m = 2

A

CS206Can we do it in less than quadratic time?

Our linked-list Josephus program needs (n− 1)m link
transversals.
Can we do it more efficiently?

First observation: If we are currently at position p, then after
m passes we will be at position (p+m) mod n (positions
numbered from 0 to n− 1).

Difficulty: How can we maintain the names of the people
remaining in the game?

We need a data structure that stores a sequence of n elements,
and supports one main operation: Remove the kth element.

No standard Scala data structure supports this operation
efficiently. We need to implement it ourselves. . .

CS206 The Rank Tree

Supports the following operations:

• Construct from an array with n elements;
• find(k) returns the item at rank (index) k;
• remove(k) removes the element at rank k;
• size() returns the current size.

Idea: Store the elements in a binary tree in in-order sequence.
Store in each node t the size of the subtree whose root is t.

To find the node with rank k, we just have to follow a path
from the root.

CS206 The remove operation

First find the node t of rank k.
Then there are three cases:

1. Easy case: t is a leaf node.

2. Slightly harder case: t has one child

7

2 9

1 5

3

7

2 9

1

3

How to remove the node t with rank k?



CS206 The remove operation

3. If t has two children, then find the leftmost node u in the
right subtree of t. Replace the element stored at t with the
element from u. Finally, remove the node u.

7

2 9

1 5

3

4

t

u

CS206 The remove operation

3. If t has two children, then find the leftmost node u in the
right subtree of t. Replace the element stored at t with the
element from u. Finally, remove the node u.

7

9

1 5

4

t 3

CS206 Rank tree analysis

find and remove take time O(h), where h is the height of the
tree.

When we construct the tree, we can make a perfectly balanced
tree.
Its height is dlog(n+ 1)e − 1.

Therefore find and remove take time O(log n), and the total
running time for the Josephus problem is O(n log n).


