
CS206 Data types and data structures

A data type (also called abstract data type or ADT) defines
the operations and behavior supported by an object.

A data type is a concept, similar to mathematical concepts
such as function, set, or sequence.

A data structure is an implementation of a data type: An
object that provides all the operations defined by the data
type, with the correct behavior.

We often have multiple, different implementations for the same
data type: Stacks can be implemented with arrays or with
linked lists, sets can be implemented with search trees or with
hash tables.

Examples of data types are Stack, Queue, Set, Dictionary.

CS206 Traits

In Scala, we can represent a data type using a trait. (“Trait”
means “personality”.)

trait Queue[T] {

def clear(): Unit

def isEmpty: Boolean

def head: T

def dequeue(): T

def enqueue(els: T*):

Unit

}

trait Stack[T] {

def push(el: T):

Stack[T]

def top: T

def pop(): T

def isEmpty: Boolean

}

A trait defines the methods that a data type provides, together
with the types of the arguments and the result type. A trait
can have type parameters (like T here).

Traits are called interface or abstract class in other languages.

CS206 Traits as arguments

A trait can be used as a type for a variable:

def reverse(stack: Stack[Char], s: String) {

for (ch <- s)

stack.push(ch)

while (!stack.isEmpty)

print(stack.pop())

}

The function reverse can be called with any object that
implements the Stack[Char] trait.

reverse(new FixedStack[Char], "Hello")

reverse(new LinkedStack[Char], "Hello")

reverse(new scala.collection.mutable.Stack[Char]

with Stack[Char], "Hello")

CS206 Implementing a trait

To implement a trait, we create a class that provides all the
methods of the trait, with the correct types.

Normally, the class would indicate that it implements the trait
using the extends keyword:

class FixedStack[T : ClassTag] extends Stack[T] {

extends means that where ever a Stack trait object is
needed, a FixedStack object can be used:

reverse(new FixedStack[Char], "CS206")

val s: Stack[Int] = new FixedStack[Int]

Scala allows to use an object as an implementation even if it
does not use extends, using the with keyword. This is not
possible in Java or C++.



CS206 Circular buffers

Implementing a stack using an array is easy—just keep a
counter to remember the top of the stack inside the array.

Implementing a queue is harder, because we insert and remove
elements at two different places. The normal way to do this is
using a circular buffer.

front

rear

Since we do not have circular
memory, we have to simulate that
using a linear array, and two index
pointers.

When the index reaches the end,
it “wraps around” to the
beginning.

dequeue

enqueue

empty

full

CS206 Circular buffers

rearfrontEmpty buffer

Enqueue one front rear

Enqueue four front rear

Dequeue one front rear

frontrear Enqueue one

CS206 Circular buffers

frontrear Enqueue three

frontrear Dequeue two

frontrearEnqueue three

frontrearEnqueue one more?

What does front == rear mean? Full buffer or empty buffer?

Typical solution: Forbid filling buffer completely, always keep
one slot free. (See Circular Buffers on Wikipedia for other solutions.)

CS206 A stack without arrays

Using an array to store the stack elements means we either
need to know the maximum stack size in advance, or we
sometimes need to (slowly) copy elements into a new array.

We can avoid this and achieve push and pop operations that
are always fast, if we use a small Node object to hold each
stack element.

The LinkedStack

holds a reference to
the Node at the top
of the stack.
Each Node holds a
reference to the one
directly below in the
stack.

LinkedStack 1

2

3

4


