
CS206 Priority Queues

An internet router receives data packets, and forwards them in
the direction of their destination. When the line is busy,
packets need to be queued.

A Priority Queue is a data type where elements have different
priorities. The priority queue provides three main methods:

findMin Return the most urgent element (highest priority, e.g.
minimal event time).

deleteMin Remove the most urgent element from the priority
queue.

insert Add a new element to the priority queue.

Some data packets have higher priority than others, and need
to be sent first. Queuing is not FIFO.

CS206 Scala Priority Queues

In scala.collection.mutable.PriorityQueue[T], the
methods are called head, dequeue, and enqueue.

scala> import scala.collection.mutable.PriorityQueue

scala> val p = new PriorityQueue[Double]

scala> p.enqueue(2.3, 5.9, 1.5, 9.8, 13.0)

scala> p.head

res1: Double = 13.0

scala> p.dequeue()

res2: Double = 13.0

scala> p.head

res3: Double = 9.8

scala> p.enqueue(11.2)

scala> p.head

res5: Double = 11.2

CS206 Binary Heaps

(an implementation of Priority Queues)

The abstract data type Priority Queue provides three main
methods:

findMin Return the smallest element.
deleteMin Remove the smallest element.
insert Add a new element.

Implementation findMin deleteMin insert

Unsorted list O(n) O(n) O(1)
Sorted list O(1) O(1) O(n)

Heap O(1) O(log n) O(log n)

CS206 Heaps and Heap Order

We will use a Heap: a complete binary tree, with one element
per node.

Heap-order: For every node x with parent p, the element in p
is smaller than the element in x.

Many different heaps are possible for the same data.
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CS206 The Insert Operation

• The insert method adds a given element to the heap.
• We need to maintain heap order and completeness

There is only one correct node that can be added:
• Either the next open position from the left at level h
• Or the first position in level h+ 1 if level h is full
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CS206

• Once we have placed the new node in the proper position,
then we must account for the ordering property

• We simply compare the new node to its parent value and
swap the values if necessary

• We continue this process up the tree until either the new
value is greater than its parent or the new value becomes
the root of the heap
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CS206 The DeleteMin Operation

• The deleteMin method removes the minimum element
from the heap

• The minimum element is always stored at the root
• After removing the minimum, we have to fill the root with

a replacement element.

• The replacement element is always the last leaf
• The last leaf is always the last element at level h
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• Once the element stored in the last leaf has been moved to
the root, the heap will have to reordered

• This is accomplished by comparing the new root element to
the smaller of its children and swapping them if necessary

• This process is repeated down the tree until the element is
either in a leaf or is less than both of its children
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Because the tree has a fixed structure, we can implement it
using an array.

The height of the tree is log n, and so insert and deleteMin

take O(log n) time.

Building a heap out of n given items takes time O(n log n)
using n insert operations.

We can do better: Just throw all n items into the array, then
run buildHeap to fix the heap-ordering in O(n) time.

Idea: If we have a binary tree such that the two subtrees of the
root are heaps, then we only need to let the root element
percolate down into a correct position to ensure that the tree
is a heap.

CS206 Priority-Queue Sort

We can easily sort using a priority queue:

def pqSort(A: Array[E]) {

val Q = new PriorityQueue[E]

for (el <- A)

Q.enqueue(el)

for (i <- 0 until A.length)

A(i) = Q.dequeue()

}

What is the time-complexity?

• n× insert,
• n× deleteMin.



CS206 Priority-Queue Sort

Priority queue implemented as unsorted list:
n×O(1) for insert: O(n)
n×O(n) for deleteMin: O(n2)

Priority queue implemented using binary heap:
n×O(log n) for insert: O(n log n)
n×O(log n) for deleteMin: O(n log n)

Priority queue implemented as sorted list:
n×O(n) for insert: O(n2)
n×O(1) for deleteMin: O(n)

≈ Insertion-Sort

≈ Selection-Sort

⇒ Heap-Sort

CS206 Heap-Sort

• Instead of inserting the n elements one by one, we create a
heap operating on A;

• Use buildHeap to ensure heap ordering on the heap in
O(n) time;

• Take out one element at a time using deleteMin.

We don’t need extra storage!
We can put the items obtained by deleteMin into the array
element that has become free because the size of the heap has
decreased.

Improvements:
• Use max-heap so that items are sorted into increasing order
• Change indexing of array so that heap starts at index 0.


