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Databases and keys

A database stores records with various attributes.

The database can be represented as a table, where each row is
a record, and each column is an attribute.

Number Name Dept Alias
20090612 오재훈 산디과 alpha0401
20100202 강상익 무학 scala
20100311 손호진 무학 python is great

row

column

Databases often designate one attribute as the key. The key
has to be unique—every key appears on only one row. A table
with keys is a keyed table.

We want to find records (rows) by key, so the keyed table is a
map: key → record.
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Integer keys

Let’s make a keyed table of all the students in the class, with
the student number as the key.

Using an array with 100 slots, we can use the last two digits of
the student number as the index.

But the last two digits are not unique — we have collisions:

case class Student(name: String, id: Int,

dept: String, alias: String)

Number Name Dept Alias
20100874 정민수 무학 ubuntu
20080174 방태수 산디과 apple
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Chaining

Chaining: Each slot is actually a linked list of (key, value) pairs
stored in this slot. (We need the key!)

73
74
75

20100874
정민수

20080174
방태수

To search for a key 20080174, we access the table at index 74,
and then search through the linked list.
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Analysis

Load factor: The load factor λ of a hash table is n/N .
Running time is O(λ).

Consider insertion/deletion/searching an item x. The running
time is proportional to the length of the chain for x.

We assume the hash function is good: It should distribute the
items on the slots uniformly.

Analysis of hash tables assumes that the hash function is
random: Each slot is equally likely to be chosen. The choices
for two different items are independent.

This is equal to the number of items y for which h(y) = h(x).
For given y, this happens with probability 1/N . The expected
value for all y is n/N .
Here n is the number of items, and N is the table size.
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Open addressing

We could make the data structure much more compact if we
could avoid the linked lists and store all data in the table.

Open addressing: allow to store items at a slot different from
its hash code.
Closed addressing: items must be stored at the slot given by its
hash code: chaining.

Easiest form of open addressing: Linear probing.
Start at the slot given by the hash code.
If it is already in use, try the next, and continue until a free
slot is found.
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Linear probing
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Linear probing
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Find operation: Need to search sequentially
until key found or empty slot found.
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Linear probing
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Find operation: Need to search sequentially
until key found or empty slot found.

delete 58

Delete operation: Slot is marked as available
(can be reused at insertion, but is not the
same as an empty slot).
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Analysis of linear probing

How far do we have to search to insert a new item?

Simplified analysis: Let’s assume all slots are filled with equal
and independent probability. So each slot is filled with
probability λ = n/N .

The load factor λ ranges from 0 (empty hash table) to 1
(completely full hash table). When it approaches 1, the hash
table becomes very inefficient, and needs to be enlarged.

The expected number of probes (slots considered) until we find
a free slot is 1/(1− λ).
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Real behavior of linear probing

Unfortunately, the probabilities are not independent:

#### ## ### ## ### ##### # #### #### ### # ## #### ### # # #### ## ##### # # # ##### ##

Experiment 1: Fill each slot with probability λ = 0.7:

Experiment 2: Insert λ ∗ 100 = 70 items with linear probing:
#### ########### # # ####### ## ##### ##### ## ###### ################# # # # ### ###

Same with λ = 0.9: 6.9 versus 24.0
############ ### ####### ################## ############### ############### ## ######## # ###### ##

############################ # ########### ############# #####################################

λ = 0.5 2.0 2.5
λ = 0.7 3.3 6.0
λ = 0.9 10.0 49.5
λ = 0.95 20.0 182.1
λ = 0.99 100.0 1750.5

Average number of probes: 2.4

Average number of probes: 4.4

N = 10000, and repeating
1000 times.

Linear probing causes
clustering in the hash table.
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Real analysis of linear probing

Assuming that the hash function behaves randomly, the
expected number of probes for an insertion (or unsucessful
search) is (for N →∞):

1

2

(
1 +

1

(1− λ)2
)

Linear probing works very well when the hash function is good
and the load factor λ is small, say λ ≤ 0.5.

Linear probing is more sensitive to bad hash functions than
chaining.

Load factor includes items that have been deleted! When there
are too many deleted items, we need to rehash the table.
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Hash functions

We typically use two functions:

Hash code
h1 : keys→ integers

Compression function
h2 : integers→ [0, N − 1]

Index in hash table is computed as h2(h1(key)).

Ideally, the hash function should map keys uniformly at
random to an index into the hash table.

Resizing hash tables: We change the compression function
only, and then need to rehash all elements.
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Compression functions

Hash codes and compression functions are a bit of a black art.
It is easy to mess up.

An obvious compression function is h2(x) = x mod N .

It only works well if N is a prime number.

A better compression function is

h(x) = ((ax+ b) mod p) mod N,

where a, b, and p are positive integers, p is a large prime, and
p� N . N does not need to be prime.
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Hash Codes

A good hash code for strings:

def hashCode(key: String): Int = {

var hash = 0

for (ch <- key)

hash = (127 * hash + ch) % 16908799

hash

}

Bad hash codes:
• Sum up the codes of the letters (too small, and anagrams

collide).
• Take the first three letters (“pre” is common, “xzq” never

occurs).

Why is the function above good? Because it works in
practice. . .

Each character has different effect.

Mix up the bits
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Hash codes and equality

HashSet and HashMap only work correctly if the following
“contract” is observed:

If obj1 == obj2 then obj1.## == obj2.##.

Scala HashSet and HashMap compute a hash code by calling
the element’s ## method.
Every Scala object implements ##.

This is true for all standard types, but needs to be done by the
programmer for new types!

The default implementation of ## simple returns the memory
address of the object on the heap.

Mutable keys are dangerous! If you change a key in the hash
table, you cannot find it anymore.
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Alternatives to linear probing

Quadratic probing: Try slots i+ j2, for j = 0, 1, 2, . . ..

Secondary hash function: Try slots i+ jd(k), where d(k) is a
secondary hash function.

The details are tricky, because we need to make sure that the
probing will find an empty slot.
Before you implement this, read a good book!
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Cuckoo hashing

Hashing with guaranteed constant search time!

We need two independent hash functions h(x) and g(x).

To insert item x, check if slot h(x) or g(x) is empty. If so,
insert the item there.

Otherwise, let y be the item at position g(x). Insert x at slot
g(x), and move y to its other possible slot.

To find an item, we only need to check two slots!

If the load factor is small enough (λ ≈ 1/3), then insertions
take expected constant time.
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Hash table or binary search tree?

Hash tables do not support order on the items.

Hashing is fast if the hash function can be computed quickly.

Typical applications of hashing:

• symbol tables (in a compiler etc.),
• small databases,
• remembering positions (in a game tree),
• caching data (in a browser etc.),
• dictionaries.


