
Recursion

Recursion means to define something in terms of itself. The power of recursion lies in the possibility of
defining an infinite set of objects by a finite statement. For instance, we can define a (rooted) tree as follows:
a tree consists of a root node, which is connected to the roots of zero or more trees.

In computer science, recursion means a function that calls itself (directly, or indirectly). Recursion is a
powerful and natural problem solving technique:

Humans solve difficult problems by dividing them into easier subproblems, and then solve these subprob-
lems. Sometimes it turns out that the “easier subproblems” are actually the same problem we originally
started with, but on a smaller or easier input. In this case, there is no separate function for the subproblem,
and instead our main function calls itself recursively to solve the subproblem.

We can loosely define recursion like this:

• If the problem is small or simple enough, solve it directly (base case).
• Otherwise, divide the problem into one or more simpler instances of the same problem, solve these

recursively, and combine the solutions.

Printing a number in any base

Let’s start with a simple example: How do you find the representation of the number 83790 in base 8? More
generally, how do you find the base-b representation of a given number n?

It is easy to find the last digit of this representation: it is n mod b (n % b in Scala). The remaining digits
are then the base-b representation of n/b.

The following method implements this recursive strategy:

def printInt(n : Int, b : Int)

{

if (n >= b)

printInt(n / b, b)

print(n % b)

}

Note that there is a base case: If the number is less than b, we do not make a recursive call and actually
print the number n directly.

To design a recursive function, do not try to mentally simulate how the program is executed. Instead,
reason about your method by assuming that the recursive call works correctly, and then argue that the
method itself will do the right thing.

If you find the recursive call to printInt confusing, its helpful to imagine that someone else is going to
solve the simpler problems.

If your problem is to bake a cake, you would partition it into subproblems: break 5 eggs, warm some
butter, measure flour, etc. You could give each of the subproblems to a different little helper (let’s assume
there are some fairies in your dormitory that want to help you). When your problem is recursive, use the
same thinking: Your only task is to simplify the original problem, or to solve it directly when simplification is
either unnecessary or impossible. The Recursion Fairy will magically take care of the simpler subproblems.

In mathematics, recursion appears all the time, in definitions such as the definition of trees above (or,
for instance, in the following definition of the natural numbers N: 0 is a natural number; if n is a natural
number, then n + 1 is a natural number).

Mathematical induction is a form of recursion, and indeed, when we want to prove that a recursive
method works correctly, we use a proof by induction. For example, to prove that our method printInt is
correct, we would use induction on k, where k is the number of digits of n when written in base b (in other
words, k = dlogb(n + 1)e.

• Base case k = 1: If n has only one digit, then 0 6 n < b, and so we are in the base case of printInt,
which prints one digit correctly.

1



• Inductive step k > 1: We assume that printInt works correctly for numbers with less than k digits.
Consider now a number n with k digits in base b. Then n/b has k − 1 digits. By the inductive
assumption, this means that the recursive call printInt(n/b) correctly prints n/b. The method then
prints the last digit, and therefore the number n has been printed correctly.

In a recursive algorithm, there must be no infinite sequence of reductions to ’simpler’ and ’simpler’
subproblems. Eventually, the recursive reductions must stop with an elementary base case that can be
solved by some other method; otherwise, the recursive algorithm will never terminate.

This means that, first, we have to remember to include a base case. Second, the recursive calls must
in some sense be “easier” then the original call, so that progress is made and the base case is eventually
reached.

Towers of Hanoi

The Towers of Hanoi puzzle was first published by the mathematician Fran cois Éduoard Anatole Lucas in
1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas dAmiens’). The following year,
Henri de Parville described the puzzle with the following remarkable story:

In the great temple at Benares beneath the dome which marks the centre of the world, rests a brass plate
in which are fixed three diamond needles, each a cubit high and as thick as the body of a bee. On one
of these needles, at the creation, God placed sixty-four discs of pure gold, the largest disc resting on the
brass plate, and the others getting smaller and smaller up to the top one. This is the Tower of Bramah.
Day and night unceasingly the priests transfer the discs from one diamond needle to another according
to the fixed and immutable laws of Bramah, which require that the priest on duty must not move more
than one disc at a time and that he must place this disc on a needle so that there is no smaller disc below
it. When the sixty-four discs shall have been thus transferred from the needle on which at the creation
God placed them to one of the other needles, tower, temple, and Brahmins alike will crumble into dust,
and with a thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the hardwired
constant sixty-four. How can we move a tower of n disks from one needle to another, using a third needles as
an occasional placeholder, never placing any disk on top of a smaller disk? The trick to solving this puzzle

A B C A B C

Figure 1: Towers of Hanoi

is to think recursively. Instead of trying to solve the entire puzzle all at once, let’s concentrate on moving
just the largest disk. We can’t move it at the beginning, because all the other disks are covering it; we have
to move those n− 1 disks to the third needle before we can move the nth disk. And then after we move the
nth disk, we have to move those n− 1 disks back on top of it. So now all we have to figure out is how to. . .

STOP!! That’s it! We’re done! We’ve successfully solved the n-disk Tower of Hanoi problem by solving
two instances of the (n− 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the Recursion
Fairy (or, to carry the original story further, to the junior monks at the temple).

Our algorithm does make one subtle but important assumption: There is a largest disk. In other words,
our recursive algorithm works for any n > 1, but it breaks down when n = 0. We must handle that base

2



case directly. Fortunately, the monks at Benares are quite adept at moving zero disks from one needle to
another in no time at all, and we arrive at the following code:

def solveHanoi(n : Int, source : Char, destination : Char, spare : Char)

{

if (n > 0) {

solveHanoi(n-1, source, spare, destination)

println("Move disc " + n + " from " + source + " to " + destination)

solveHanoi(n-1, spare, destination, source)

}

}

solveHanoi(n, ’A’, ’B’, ’C’)

It is tempting to think about how all those smaller disks get moved—in other words, what happens when
the recursion is unfolded—but it’s not necessary. In fact, for more complicated problems, unfolding the
recursive calls is merely distracting. Our only task is to reduce the problem to one or more simpler instances,
or to solve the problem directly if such a reduction is impossible. Our algorithm is trivially correct when
n = 0. For any n > 1, the Recursion Fairy correctly moves the top n − 1 disks, so our algorithm is clearly
correct.

How many moves are needed to solve the problem for n disks? We can quickly check the answer for
n = 0, 1, 2, 3, and obtain 0, 1, 3, 7 moves. We therefore guess that the number of moves for n disks must be
2n − 1, and prove this claim by mathematical induction:

• Base case (n = 0 disks): The number of moves is 0 = 20 − 1, and so the claim is true.
• The inductive step: Let n > 0, and assume (Induction hypothesis) that the number of moves for n− 1

disks is 2n−1 − 1. To move n disks, we first have to move the n − 1 top disks from A to C. By the
induction hypothesis, this takes 2n−1 − 1 moves. Then we have to move the largest disk (1 move),
and finally we have to move the n− 1 top disks from C to B. This takes again 2n−1 − 1 moves by the
induction hypothesis. So the total number of moves is

(2n−1 − 1) + 1 + (2n−1 − 1) = 2n − 1,

and we have proven the claim for n disks.

Fibonacci numbers

The Fibonacci numbers Fn are defined as follows:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 for n > 1

This immediately gives us a recursive method for computing Fibonacci numbers:

def fib(n : Int) : Long = {

if (n == 0) // base cases

0

else if (n == 1)

1

else

fib(n - 1) + fib(n - 2)

}

3



F (40)

F (39) F (38)

F (37) F (36)F (38) F (37)

F (37) F (36)

Figure 2: Recursive calls for computing fib(40)

It turns out that this method becomes where slow when n ≈ 40. To see why, we draw a tree that shows all
the calls and recursive calls to the function fib—see Fig. 2. As we can see in the tree, computing fib(40)

means that we compute F38 two times, F37 three times, F36 five times—and so on, so that F41−k is computed
Fk times. Since the Fibonacci numbers grow exponentially, this procedure quickly becomes too slow. The
problem in this example is that the recursive routine performs redundant calculations, that is, calculations
that have already been done before. This example shows that recursion—blindly applied—is not always
appropriate.

The solution is to either use an array to store all previous Fibonacci numbers (so no recursion is nec-
essary), or to return both Fn and Fn−1 from the function fib(n) (see example code fibonacci2.scala and
fibonacci3.scala).

Stack frames

(We’ll discuss this a bit later in the course.)

The Scala runtime system (the Java virtual machine, or JVM) stores information in several separate
memory areas, in particular the heap and the runtime stack.

As we discussed before, the heap stores all objects.
The runtime stack contains stack frames (also known as an activation records). Each stack frame stores

the local variables of a method (which include the parameters of the method).
When a method is called, JVM creates the stack frame for the method, and pushes it onto the runtime

stack. This method can call another method, which in turn calls another one, and so on. At any time, the
stack frame at the top of the runtime stack corresponds to the currently executing method. When a method
returns, its stack frame is popped from the runtime stack, and execution returns to the calling function.

A stack is the right data structure for the storage of stack frames, since at any time, only one method is
actively executing, so we only need access to one stack frame. When this method returns, the method that
called it becomes active again—which is exactly the one that becomes the top of the stack when we pop one
stack frame.

Said differently, the starting and ending times of methods form a nicely nested pattern of opening and
closing symbols.

When a method calls itself recursively, the runtime stack will hold multiple stack frames for the same
method. Again, the top one is the one currently executing. For instance, calling factorial(3) for this
method:

def factorial(n: Int): Long = {

if (n <= 1) // base case

1

else

4



n * factorial(n - 1)

}

will lead to three stack frames for factorial being on the stack:

main

args

factorial

n 3

factorial

n 2

main

args

factorial

n 3

factorial

n 2

factorial

n 1

main

args

factorial

n 3

Figure 3: A call stack state: factorial(3)

When an exception is thrown, the runtime system uses the call stack to find the method where execution
can continue. It pops stack frames until a stack frame is found that indicates that it catches the exception.

The java.lang package has a method Thread.dumpStack() that prints a list of the methods on the
stack (but it doesn’t print their local variables). This method can be convenient for debugging–for instance,
when you’re trying to figure out which method called another method with illegal parameters that made it
crash. Another useful method is the printStackTrace() of Exception objects, which again allows you to
find out what the contents of the runtime stack was when an exception happened.

Most operating systems give a program enough stack space for a few thousand stack frames. If you use a
recursive procedure to walk through a million-node list, the system will try to create a million stack frames,
and the stack will run out of space. The result is a run-time error. You should use iteration instead of
recursion when the recursion is very deep.

5


