
The Binary Heap

A binary heap is a data structure that implements the abstract data type priority queue. That is, a binary
heap stores a set of elements with a total order (that means that every two elements can be compared), and
supports the following operations on this set:

• findMin returns the smallest element;
• deleteMin() removes the smallest element from the set and returns it;
• insert(el) inserts a new element into the set;
• size returns the current size (number of elements) of the set.

A complete binary tree is a binary tree in which every level is full, except possibly the bottom level, which
is filled from left to right as in Fig. 1. For a given number of elements, the shape of the complete binary tree

3

5 4

8 7 9

Figure 1: A complete binary tree.

is prescribed completely by this description.
A binary heap is a complete binary tree whose elements satisfy the heap-order property : no node contains

an element less than its parent’s element. Every subtree of a binary heap is also a binary heap, because
every subtree is complete and satisfies the heap-order property.

FindMin. We note that many different heaps are possible for the same data, as there are many different
ways to satisfy the heap property. However, all possible heaps have one feature in common: A smallest
element must be in the root node. This implies that the findMin operation is very easy—it just returns the
element from the root node.

Insert. To insert an element into the binary heap, we first have to add a node to the tree. Because we
need to maintain that the tree is complete, there is only one possible place where we can add the node: If
the lowest level is not yet full, we need to add the next open position on this level. If the lowest level is full,
we need to add a new node at the leftmost position on the next level, see Fig. 2 for both cases.

3

5 4

8 7 9

3

7 4

8 9 5 6

Figure 2: Two cases of adding a node.

1



Of course, the new element may violate the heap-order property. We correct this by having the element
bubble up the tree until the heap-order property is satisfied. More precisely, we compare the new element
x with its parent; if x is less, we exchange x with its parent, then repeat the procedure with x and its new
parent.

Fig. 3 shows the four stages during the insertion of the new element 2.

3

5 4

8 7 9

3

5 4

8 7 9 2

5

8 7 9

3

2

4

5

8 7 9

2

3

4

Figure 3: Adding element 2.

When we finish, is the heap-order property satisfied? Yes, if the heap-order property was satisfied before
the insertion. Let’s look at a typical exchange of x with a parent p during the insertion operation. Since
the heap-order property was satisfied before the insertion, we know that p 6 s (where s is x’s sibling, see
Fig. 4), p 6 l, and p 6 r (where l and r are x’s children). We only swap if x < p, which implies that x < s;
after the swap, x is the parent of s. After the swap, p is the parent of l and r. All other relationships in the
subtree rooted at x are maintained, so after the swap, the tree rooted at x has the heap-order property.

p

x s

l r

x

p s

l r

Figure 4: Maintaining the heap property during bubble-up.

DeleteMin. The deleteMin() operation starts by removing the entry at the root node and saving it for
the return value. This leaves a gaping hole at the root. We fill the hole with the last entry in the tree (which
we call x), so that the tree is still complete.

It is unlikely that x is the minimum element. Fortunately, both subtrees rooted at the root’s children
are heaps, and thus the new mimimum element is one of these two children. We bubble x down the heap as

2



follows: if x has a child that is smaller, swap x with the child having the smaller element. Next, compare x
with its new children; if x still violates the heap-order property, again swap x with the child with the smaller
element. Continue until x is less than or equal to its children, or reaches a leaf.

Fig. 5 shows the stages in this process. Note that if in the original heap we replace 5 by 10, then 6 would
not bubble down all the way to a leaf, but would remain on a higher level.

3

7 4

8 9 5 6

7

8 9

6

4

5

7

8 9

6

4

5

7

8 9

4

6

5

7

8 9

4

6

5

7

8 9

5

6

4

Figure 5: Removing the minimum element.

Array-based implementation. Of course a complete binary tree can be implemented as a linked data
structure, with Node objects that store references to their parent and children. However, because the tree
is complete, we can actually store it very compactly in an array. To do so, simply number the nodes of the
tree from top to bottom, left to right, starting with one for the root, so that the nodes are numbered from 1
to n. We observe that the left child of node i has index 2i and the right child has index 2i + 1. The parent
of node i has index bi/2c. We will simply store node i in slot i of an array, and we can move from a node to
its parent or its children by doing simple arithmetic on the index.

(We started numbering from 1 for convenience—the numbers are nicer. Of course this means that we
waste slot 0 of the array—not a big problem, but it could be fixed by changing the numbering scheme
slightly.)

Implementation. We now give a complete implementation in Scala. Our Heap class can be constructed
either by providing an array to be used, or by passing null (and the Heap class will create an array itself).
It also takes a function object lessThan as an argument. This function object will be used to compare
elements of type T, so that we can build heaps of objects that have no implicit ordering.

3



class Heap[T : ClassManifest](els: Array[T], val lessThan: (T,T) => Boolean)

We use the doubling-technique for growing the array. Initially, we create an array of some default capacity,
and set currentSize to zero.

The methods size and findMin are very easy:

def size: Int = currentSize

def findMin: T = {

if (currentSize == 0) throw new NoSuchElementException

else A(1)

}

The insert method first ensures there is enough space to add a node to the tree. For efficiency, we do
not actually place x in the new node, but keep it empty (a “hole”). Then we bubble the hole up in the tree
until x is no longer smaller than the parent of the hole, and finally place x in the hole.

def insert(x: T) {

if (currentSize + 1 == A.length)

doubleArray()

currentSize += 1

var hole = currentSize

A(0) = x

// Percolate up

while (lessThan(x, A(hole/2))) {

A(hole) = A(hole/2)

hole /= 2

}

A(hole) = x

}

Note that we use a little trick here: We put x into A(0). This allows us to skip a test for hole == 1 in
the while-loop. Since the root has no parent, the loop should end there. However, since hole/2 == 0 for
hole == 1, in the root we will compare x to A(0), that is to itself, so lessThan will return false and the
loop will end automatically.

Finally, the hardest operation is deleteMin. It makes use of two internal methods. First, the method
smallerChild(hole, inHole) checks whether one of the children of the node with index hole is smaller
than the element inHole. If so, it returns the index of the smaller element, otherwise it returns zero:

private def smallerChild(hole: Int, inHole: T): Int = {

if (2 * hole <= currentSize) {

var child = 2 * hole

if (child != currentSize && lessThan(A(child + 1), A(child)))

child += 1

if (lessThan(A(child), inHole))

child

else

0

} else

0

}

The internal method percolateDown(i) bubbles down the element in node i:

4



private def percolateDown(i: Int) {

val inHole = A(i)

var hole = i

var child = smallerChild(hole, inHole)

while (child != 0) {

A(hole) = A(child)

hole = child

child = smallerChild(hole, inHole)

}

A(hole) = inHole

}

With these internal methods,deleteMin() is rather easy:

def deleteMin(): T = {

val minItem = findMin

A(1) = A(currentSize)

currentSize -= 1

percolateDown(1)

minItem

}

Analysis. Since the heap is always a complete binary tree, its height is O(log n) at any time, where n is
the current size of the set. It follows that the operations deleteMin and insert take time O(log n).

The operations size and findMin take constant time.
Now imagine we have n elements and we want to insert them into a binary heap. Calling insert n times

would take total time O(n log n). Perhaps surprisingly, we can actually do better than this by creating an
array for the n elements, throwing the elements into this array in some arbitrary order, and then running
the following method:

private def buildHeap() {

for (i <- currentSize / 2 to 1 by -1)

percolateDown(i)

}

The method works backward from the last internal node (non-leaf node) to the root node, in reverse order
in the array or the level-order traversal. When we visit a node this way, we bubble its entry down the heap
using percolateDown as in deleteMin.

We are making use of the fact that if the two subtrees of a node i are heaps, then after calling
percolateDown(i) the subtree rooted at node i is a heap. By induction, this implies that when buildHeap

has completed, the entire tree is a binary heap.
The running time of buildHeap is somewhat tricky to analyze. Let hi denote the height of node i, that is,

the length of a longest path from node i to a leaf. The running time of percolateDown(i) is clearly O(hi),

and so the running time of buildHeap is O(
∑bn/2c

i=1 hi).
How can we bound this sum? Here is a simple and elegant argument. For simplicity, let’s assume that

n = 2h+1 − 1, so the tree has height h and is perfect—all leaves are on level h. Clearly adding nodes on the
bottom level can only increase the value of the sum.

Now, for every node i there is a path Pi of length hi from i to a leaf as follows: From i, go down to its
right child. From there, always go down to the left child until you reach a leaf. It is easy to see that for two
different nodes i and j, the paths Pi and Pj do not share any edge. It follows that the total number of edges
of all the paths Pi, for 1 6 i 6 n, is at most the number of edges of the tree, which is n − 1. So we have∑n

i=1 hi 6 n− 1, and so the running time of buildHeap is O(n).

5



Heap Sort

Any priority queue can be used for sorting:

def pqSort(A: Array[E]) {

val Q = new PriorityQueue[E]

for (el <- A)

Q.insert(el)

for (i <- 0 until A.length)

A(i) = Q.deleteMin()

}

The binary heap is particularly well suited to implement a sorting algorithm, because we can use the
array containing the input data to implement the binary heap. We therefore obtain an in-place sorting
algorithm, which sorts the data inside the array.

Initially, we run buildHeap to put the objects inside the array into heap order. We then remove them
one by one using deleteMin. Every time an element is removed from the heap, the heap needs one less array
slot. We can use this slot to store the element that we just removed from the heap, and obtain the following
algorithm:

def heapSort(A: Array[Int]) {

val heap = new Heap[Int](A, (x, y) => x < y)

for (i <- A.length - 1 until 1 by -1)

A(i) = heap.deleteMin()

}

Here is an example run:

scala> val A = Array(0, 13, 2, 9, 55, 5, 17, 1, 89, 45)

A: Array[Int] = Array(0, 13, 2, 9, 55, 5, 17, 1, 89, 45)

scala> heapSort(A)

scala> A

res1: Array[Int] = Array(0, 89, 55, 45, 17, 13, 9, 5, 2, 1)

The element in slot 0 of the array was not sorted, since our Heap implementation doesn’t use this slot. This
could be fixed by changing the indexing of the array.

Also, the array is sorted backwards, because we have to fill it starting at the last index. This can be
fixed by using a max-heap instead of a min-heap. In our implementation, all we need to do is to change the
function object as follows:

def heapSort(A: Array[Int]) {

val heap = new Heap[Int](A, (x, y) => x > y)

for (i <- A.length - 1 until 1 by -1)

A(i) = heap.deleteMin()

}

6


