
Binary Trees

A binary tree is a rooted tree where every node has at most two children. When a node has only one child,
we still distinguish whether this is the left child or the right child of the parent. A Node class for a binary
tree looks something like this:

class Node[T](var el: T, var left: Node[T], var right: Node[T])

Often, binary tree nodes store additional information. Sometimes, we also need to store a reference to the
parent of the node. We already met binary trees as rank trees, and in binary heaps (although we used an
array to implement the tree in the binary heap).

We will now see how to use a binary tree to implement a Set or a Map. We can think of a Set as a special
case of a Map, which maps elements of the set to true, so in the following we will only discuss Map. As a
reminder, here is a trait for an immutable TreeMap on keys of type Key with a total order:

trait TreeMap[Key, Value] {

def isEmpty: Boolean

def contains(key: Key): Boolean

def apply(key: Key): Value

def + (mapping: (Key, Value)): TreeMap[Key, Value]

def - (key: Key): TreeMap[Key, Value]

def firstKey: Key

def lastKey: Key

def size: Int

}

The two basic method are contains and apply. The method contains(k) determines if the key k is present
in the map, the method apply(k) returns the value stored with the key k (and raises an exception if k is
not present in the map). The methods firstKey and lastKey return the smallest and largest key present
in the map. The + operator returns a new map which adds a new mapping for the (Key,Value)-pair. The
- operator returns a new map where one mapping has been removed. Finally, isEmpty returns whether the
map contains no key at all, and size returns the number of keys present in the map.

Binary Search Trees

A binary search tree is a binary tree where every node stores one key value (and the value that corresponds
to this key), and that has the binary search tree property : For any node v, all the keys in the left subtree
of v are less than the key of v, and all the keys in the right subtree of v are larger than the key of v.

As a result, an in-order traversal of a binary search tree returns the keys in sorted order.
For simplicity, the code in the following will assume that the keys are Int objects. Binary search trees

really work with any type of object that has a total order (that is, where any two objects can be compared).
Here is the Node class of our BinarySearchTree:

case class Node(val key: Int, val value: Int,

val left: Node, val right: Node)

Finding keys. To implement contains(k) and apply(k), we need to find the node containing a given
key k. We start at the root and compare k to the key s of the root node. If k = s, then the node we are
looking for is the root node itself. If k < s then by the search tree property, we know that k can only be in
the left subtree of the root. If k > s, then k can only be in the right subtree of the root. We proceed in this
manner until we either find a node with key k, or we reach an empty subtree:

private def find(key: Int, n: Node): Node = {

var t = n

1

while (t != null && key != t.key) {

if (key < t.key) t = t.left

else t = t.right

}

t

}

Smallest and largest keys. To implement firstKey, we need to find the smallest key in the search tree.
For every node, its left subtree contains all the keys smaller than the key in the node itself, so the smallest
key in the tree can be found by always walking down to the left child until there is no more left child:

private def findMin(n: Node): Node = {

var t = n

if (t != null)

while (t.left != null)

t = t.left

t

}

You may recognize this from method findFirst in our rank tree. Implementing lastKey works the same,
walking down to the right child.

Inserting a key. To add a mapping (k, v), we first follow the same path through the tree as find(k). (In
fact, find works because it follows the same path as insertions!)

If we find a node n containing key k, then we update the tree by changing the value at n to v. Otherwise,
we reach an empty subtree, and we replace this empty subtree by a single node with key k and value v.

Since we are implementing an immutable binary search tree, our internal insert method returns a new
node in both cases. More precisely, insert(k, v, n) returns a new node that is the root of a subtree that is
identical to the subtree rooted at n, but with the mapping k → v added or changed:

private def insert(key: Int, value: Int, n: Node): Node = {

if (n == null)

Node(key, value, null, null)

else {

if (key < n.key)

Node(n.key, n.value, insert(key, value, n.left), n.right)

else if (key > n.key)

Node(n.key, n.value, n.left, insert(key, value, n.right))

else // key == n.iKey

Node(key, value, n.left, n.right)

}

}

Removing a key. Removing a mapping is the hardest part. Fortunately, we already learnt how to remove
a node from a binary tree when we implemented rank trees, and we can use the exact same method here:

We first find the node n containing the key k to be deleted. If n is a leaf or has only one child, we can
remove the node n easily, by changing the link from n’s parent. If n has two children, we do not remove the
node n. Instead, we find the leftmost node u in the right subtree of n. The key of u is the smallest key in
the tree that is larger than k. That means that we can move the key and value information from u to n, and
delete the node u. Since u has no left child, this is again easy.

As for insertions, the internal method remove(k, n) returns the root of a new subtree that is identical to
the subtree rooted at n, except that the mapping for k has been removed:

2

private def remove(key: Int, n: Node): Node = {

if (n == null)

null

else {

if (key < n.key)

Node(n.key, n.value, remove(key, n.left), n.right)

else if (key > n.key)

Node(n.key, n.value, n.left, remove(key, n.right))

else if (n.left != null && n.right != null) { // Two children

val u = findMin(n.right)

Node(u.key, u.value, n.left, removeMin(n.right))

} else if (n.left == null)

n.right

else

n.left

}

}

remove makes use of another internal method removeMin(n), which again returns a new subtree, identical
to the subtree at n except that the leftmost node has been removed:

private def removeMin(n: Node): Node = {

if (n == null)

null

else if (n.left != null)

Node(n.key, n.value, removeMin(n.left), n.right)

else

n.right

}

Other operations. The isEmpty method only needs to check if root is null, and takes constant time.
My implementation of the size method is rather slow: It recursively visits the entire tree and counts the

nodes:

private def size(t: Node): Int = {

val left = if (t.left == null) 0 else size(t.left)

val right = if (t.right == null) 0 else size(t.right)

left + right + 1

}

This is not a good idea if we need the size of the map often. We should rather keep a separate integer field
currentSize, which we update in + and - operations.

My tree has another method height, which returns the current height of the tree. This method is really
only for statistical and teaching purposes, so it doesn’t matter much that it is slow. Again, it recursively
visits the entire tree in time O(n) to compute the height of the tree:

private def height(t: Node): Int = {

val left = if (t.left == null) -1 else height(t.left)

val right = if (t.right == null) -1 else height(t.right)

(left max right) + 1

}

3

Analysis Finding, inserting, and removing nodes from a binary search tree takes time O(h), where h is
the current height of the tree. In a perfectly balanced binary tree we would have h = log n. Unfortunately,
it is quite easy to make very unbalanced trees. For instance, this code

var t = new BinarySearchTree

for (i <- 1 to n)

t = t + (i -> i+1)

creates a tree of height n − 1. Essentially, this tree is a linked list: nodes have no left child, only a right
child.

It can be shown that binary search trees offer O(log n) performance on insertions of randomly chosen or
randomly ordered keys with high probability. As long as the trees remain “reasonably” well-balanced, search
operations will run in O(log n) time.

In practice, you may need to resort to experiments to determine whether your particular application uses
binary search trees in a way that tends to generate somewhat balanced trees or not.

Unfortunately, there are occasions where you might fill a tree with entries that happen to be already
sorted. In this circumstance, a disastrously imbalanced tree will be the result. Technically, all operations on
binary search trees have O(n) worst-case running time.

For this reason, researchers have developed a variety of algorithms for keeping search trees balanced.
“Balanced” means that the left and right subtree of every node should have roughly equal “size”. Many
different kinds of balanced search trees have been developed—we will discuss AVL-trees, 2-3-4 trees, and
red-black trees.

AVL Trees

AVL trees are height-balanced trees, and are the oldest balanced search trees (1962). They are named after
their inventors, Georgy Adelson-Velsky and Evgenii Landis. An AVL-tree is a binary search tree with an
additional balance property : For every node of the tree, the height of the left subtree and the right subtree
differ by at most one. Here, we count the height of the empty subtree as −1.

Height of AVL-trees. We first show that AVL-trees have height O(log n). More precisely, we ask the
opposite question: For a given height h, what is the smallest number of nodes N(h) that an AVL-tree with
height h can have?

A bit of drawing quickly shows that N(0) = 1, N(1) = 2, N(2) = 4, and N(3) = 7.
For h > 2, we have N(h) = N(h− 1) + N(h− 2) + 1. Indeed, consider an AVL-tree of height h. One of

its subtrees, let’s say the left subtree, must be an AVL-tree of height h− 1, and so it has at least N(h− 1)
nodes. The right subtree must have either height h− 1 or height h− 2, since otherwise the balance property
would be violated at the root. It follows that the right subtree has at least N(h− 2) nodes, so the tree has
at least N(h− 1) + N(h− 2) + 1 nodes. This shows that N(h) > N(h− 1) + N(h− 2) + 1.

We actually have equality in this recursive formula, because we can take a smallest possible AVL-tree of
height h − 1, a smallest possible AVL-tree of heigth h − 2, and merge them into an AVL-tree of height h
with N(h− 1) + N(h− 2) + 1 nodes. The trees constructed this way are called Fibonacci-trees.

Since clearly N(h−1) > N(h−2), we have N(h) > 2N(h−2), and we immediately get that N(h) > 2dh/2e.
If we know that a tree has n nodes and height h, then this implies that n > N(h) > 2dh/2e, and so log n > h/2,
and so h 6 2 log n.

We can get a better bound by using the Fibonacci numbers. Remember that F0 = 0, F1 = 1, and
Fi = Fi−1 + Fi−2 for i > 2. We now prove by induction that N(h) = Fh+3 − 1. This is true for h = 0 and
h = 1, so consider h > 2. Then N(h) = N(h− 1) + N(h− 2) + 1 = Fh+2 − 1 + Fh+1 − 1 + 1 = Fh+3 − 1.

Luckily for us, there is a formula for the Fibonacci numbers. We have Fi = ϕi/
√

5+(1−ϕ)i/
√

5, where ϕ
is the golden ratio ϕ ≈ 1.618034. The second term is very small, so we have N(h) = Fh+3−1 ≈ ϕh+3/

√
5−1.

It follows that for a tree with n nodes we have h + 3 6 logϕ(
√

5(n + 1)) and so h 6 1.4405 log(n + 1).

4

Node objects. To implement an AVL-tree, we store with each node v the height of the subtree rooted
at v:

case class Node(var key: Int, var value: Int,

var height: Int,

var left: Node, var right: Node) {

def leftHeight: Int = if (left == null) -1 else left.height

def rightHeight: Int = if (right == null) -1 else right.height

def recomputeHeight(): Boolean = {

val left = leftHeight

val right = rightHeight

height = (left max right) + 1

val diff = right - left

(diff < -1 || 1 < diff)

}

}

The methods leftHeight and rightHeight return the heights of the two subtrees, and correctly handle the
case of an empty subtree, which we define to have height −1. The method recomputeHeight recomputes
the height of a node from the heights of its two subtrees. It also returns true if the node is unbalanced, that
is, if the height difference is larger than one.

You may notice that I have changed the Node class to be mutable. Indeed, I will use an AVL-tree to
implement the following mutable TreeMap trait:

trait TreeMap[Key, Value] {

def isEmpty: Boolean

def contains(key: Key): Boolean

def apply(key: Key): Value

def += (mapping: (Key, Value)): Unit

def -= (key: Key): Unit

def firstKey: Key

def lastKey: Key

def height: Int

def size: Int

}

The difference with the immutable TreeMap we used above is that here += and -= are used to insert and
remove mappings into the tree, and they modify the tree itself (they do not return a new tree).

One can, of course, use AVL-trees to implement immutable trees. Implementing a mutable tree is perhaps
slightly easier, and in any case I want you to meet both kinds of trees in this course.

Finding keys, smallest and largest keys. An AVL-tree is a binary search tree: It fulfills the search
tree property. Therefore, all BST methods that do not modify the tree work unchanged on AVL trees:
contains(k), apply(k), isEmpty, size, etc.

The big difference is: Since we have proven above that the height of an AVL-tree with n nodes is O(log n),
we have a guarantee on the running time of contains(k) and apply(k). These methods take time O(log n)
on an AVL tree that stores n elements.

Maintaining balance. To add a mapping (k, v), we first follow the path through the tree as in find(k).
If we find a node n containing key k, then we simply update the tree by changing the value at n to v.

5

Otherwise, we reach an empty subtree, and we replace this empty subtree by a single node w with key k and
value v. The height of all subtrees that include w may change, and as a consequence the tree may become
unbalanced.

When we remove a mapping for k, we again first find the node as in find(k). If the node is a leaf or
has only one child, we can delete it easily, otherwise we instead delete the leftmost node in its right subtree.
Let w be the node that was deleted. Again, the height of all subtrees that include w may change.

In both cases, we observe first that the nodes whose subtree includes w are exactly the ancestors of w.
These ancestors form a path from the root to w, and some of them may have become unbalanced because
of the insertion or deletion of w.

Let z be the lowest ancestor of w that is now unbalanced. Let y be the child of z with larger height (the
two children cannot have equal height since z is unbalanced). Let x be the child of y with larger height (if
both children of y have equal height, we chose x to be the right child of y if y is the right child of z, and
chose x to be the left child of y if y is the left child of z).

We will now restructure the subtree with root z. We distinguish four cases, depending on the ordering
of the keys stored at x, y, and z. Fig. 1 shows the four cases. If y is the right child of z, we are in the left

z

y

x

T3

T2

T1

T0

z

T3

T0

T2

T1

y

x

z

y

x

T0

T1

T2

T3

z

T0

T3

T1

T2

y

x

Figure 1: Four cases for restructuring.

column of Fig. 1. If the key of x lies inbetween the keys of y and z, we are in the bottom row, otherwise in
the top row.

Let T0, T1, T2, and T3 be the four subtrees of z, y, and x, as in Fig. 1. By our choice of z, all four trees
are balanced. Let h(T) denote the height of a subtree T , and let h(v) denote the height of the subtree with
root v (before restructuring). Recall that by our choice of z, the nodes x and y are balanced, while z is
unbalanced (before restructuring).

Left rotation. Let us first consider the case where y is the right child of z, and x is the right child of y
(top left in Fig. 1). We restructure the subtree with root z by making y its new root, and moving z into the
left subtree of y as in Fig. 2. This operation is called a left rotation about z.

We first argue that a left rotation maintains the search tree property of the tree. Let us write T0 ≺ z
to mean that all keys in T0 are less than the key of z. Since the search tree property held before the left

6

z

y

x

T0 T1 T2

T3

z

y

x

T0

T1

T2

T3

Figure 2: Left rotation about z.

rotation, we have
T0 ≺ z ≺ T1 ≺ y ≺ T2 ≺ x ≺ T3.

This implies that the search tree property holds after the left rotation. For instance, all keys in the subtree
formed by T0, T1, and z are less than the key of y.

We now argue that after the left rotation the subtree (with new root y) is balanced. Without loss of
generality, let’s assume that h(T2) > h(T3). Since x is balanced, that means h(T2) > h(T3) > h(T2) − 1.
We have h(x) = h(T2) + 1. Since y is balanced, and we have chosen x to be the child of y with larger
height, we have h(T2) + 1 = h(x) > h(T1) > h(x)− 1 = h(T2). The node z, however, is unbalanced, and so
h(T0) = h(y)− 2 = h(T2).

After the left rotation, node x is still balanced, as its subtrees have not changed. Node z is now balanced,
since we have

h(T0) + 1 = h(T2) + 1 > h(T1) > h(T2) = h(T0.)

Finally, node y is balanced since h(z) = h(T1) + 1 and h(x) = h(T2) + 1, and so h(x) + 1 > h(z) > h(x).
In this way, we have re-established the balance property for this subtree. There may still be ancestors

of w (and therefore ancestors of the new node y) that are unbalanced, so we have to repeat the procedure
there.

Right rotation. The case where y is the left child of z and x is the left child of y is entirely symmetric.
We perform a right rotation about z. Fig. 3 shows an example of an insertion that causes a right rotation.

Double rotations. Let’s now consider the case where y is the right child of z and x is the left child
of y (bottom left in Fig. 1). In this case, we first perform a right rotation about y, and then a left rotation
about z, see Fig. 4. We call this operation a (right-left) double rotation.

Again, we first need to check that the resulting tree has the search tree property. This is true because

T0 ≺ z ≺ T1 ≺ x ≺ T2 ≺ y ≺ T3.

It remains to check the balance condition on the new subtree (with root x). Without loss of generality,
let’s assume that h(T1) > h(T2). Since x is balanced, that means h(T1) > h(T2) > h(T1) − 1 and we have
h(x) = h(T1) + 1. Since y is balanced, and we have chosen x to be the child of y with strictly larger height
in this case, we have h(T3) = h(x)− 1 = h(T1). Since z, is unbalanced, we have h(T0) = h(y)− 2 = h(T1).
To summarize, we have

h(T0) = h(T1) = h(T3) > h(T2) > h(T1)− 1.

In the new tree, z is balanced since h(T0) = h(T1). Similarly, y is balanced since h(T3) > h(T2) >
h(T3)− 1. The new root x is balanced since h(z) = h(T1) + 1 = h(T3) + 1 = h(y).

Finally, the case where y is the left child of z and x is the right child of y completely symmetric, and we
perform a left-right double rotation.

7

4

2 6

10 14

12

8 16

w1

4

2 6

10 14

12

8 16

z

y

x

1

4

2 6

10 14

12

8 16

2

1 6

8 14

12

4 16

10

Figure 3: Insertion of 1.

Implementation. We start by two internal methods that implement left-rotations and right-rotations.
rotateLeft(t) rotates about node t, and returns the new root of the subtree (which is the right child of t).
The method already recomputes the height of all nodes whose height has changed:

private def rotateLeft(t: Node): Node = {

val root = t.right

t.right = root.left

t.recomputeHeight()

root.left = t

root.recomputeHeight()

root

}

The method rotateRight(t) is exactly symmetric:

private def rotateRight(t: Node): Node = {

val root = t.left

t.left = root.right

t.recomputeHeight()

root.right = t

root.recomputeHeight()

root

}

The following internal method implements the restructuring operation. z is the root of the subtree to be
restructured. The method uses the heights of the children to determine which of the four cases we are in:

private def restructure(z: Node): Node = {

if (z.rightHeight > z.leftHeight) {

8

z

T0

T3

T1 T2

y

x

z

T0 T3T1

T2

y

x

z

T0

T3

T1

T2

y

x

Figure 4: Double rotation

if (z.right.leftHeight > z.right.rightHeight)

z.right = rotateRight(z.right)

rotateLeft(z)

} else { // z.leftHeight > z.rightHeight

if (z.left.rightHeight > z.left.leftHeight)

z.left = rotateLeft(z.left)

rotateRight(z)

}

}

Now we have all the pieces to implement the insert function. put(k, v, t) adds the mapping k → v to the
subtree rooted at t, and returns the new root of the subtree, guaranteed to be an AVL-tree again:

private def put(key: Int, value: Int, t: Node): Node = {

if (t == null)

Node(key, value, 0, null, null)

else {

if (key < t.key)

t.left = put(key, value, t.left)

else if (key > t.key)

t.right = put(key, value, t.right)

else

// key == t.key

t.value = value

if (t.recomputeHeight())

restructure(t)

else

t

9

}

}

Remember that after inserting the node w we have to walk up again in the tree until we find the first
node that is now unbalanced. The method put implements the “walking up” using recursion: It inserts the
mapping into the correct subtree, then updates the height of the current node t, and restructures if necessary.
A more careful analysis of the restructuring cases shows that in insertions, this can actually happen for one
ancestor only (that is, after one restructuring operation the entire tree is balanced). We do not discuss this
refined analysis, as our code does not use this fact.

It remains to discuss the remove function. The following internal function removeMin(t) removes the
leftmost node (smallest key) from the subtree with root t, and returns the root of the new subtree. The
returned tree is already balanced.

private def removeMin(t: Node): Node = {

if (t.left != null) {

t.left = removeMin(t.left)

if (t.recomputeHeight())

restructure(t)

else

t

} else

t.right

}

Finally, the following function removes the mapping for key k from the subtree with root t, and returns
a new, balanced subtree:

private def remove(key: Int, t: Node): Node = {

if (t == null)

null

else {

if (key < t.key)

t.left = remove(key, t.left)

else if (key > t.key)

t.right = remove(key, t.right)

else if (t.left != null && t.right != null) { // Two children

val u = findMin(t.right)

t.key = u.key

t.value = u.value

t.right = removeMin(t.right)

} else

return (if (t.left != null) t.left else t.right)

if (t.recomputeHeight())

restructure(t)

else

t

}

}

Minimizing memory use. We used an Int field to store the height of each node. That wastes some
memory—since AVL-trees are balanced, the height cannot be more than, say, 100, which would easily fit in
one Byte. In fact, it turns out that AVL-trees can be implemented using only two bits per node: Instead of
storing the height in each node, we store the difference of the heights of the two subtrees. By the balance

10

condition, this difference is either −1, 0, or +1, and can be stored in two bits. We leave it as an exercise to
make such an implementation.

2-3-4 trees

A 2-3-4 tree is a perfectly balanced tree, where all leaves are on the bottom level. 2-3-4 trees are thus
named because every node has 2, 3, or 4 children, except leaves. Each node stores 1, 2, or 3 keys (and the
corresponding values), which determine how other entries are distributed among its children’s subtrees.

Each internal (non-leaf) node has one more child than keys. For example, a node with keys [20, 40, 50]
has four children. Eack key k in the subtree rooted at the first child satisfies k 6 20; at the second child,
20 6 k 6 40; at the third child, 40 6 k 6 50; and at the fourth child, k > 50.

2-3-4 trees are a type of B-tree, which you may learn about someday in connection with fast disk access
for database systems.

Finding a key. Finding an entry is straightforward. Start at the root. At each node, check for the key
k; if it’s not present, move down to the appropriate child chosen by comparing k against the keys. Continue
until k is found, or k is not found at a leaf node.

By the way, you can define an inorder traversal on 2-3-4 trees analogous to that on binary trees, and it
visits the keys in sorted order.

Adding a mapping (bottom-up). To add the mapping k → v, we first walk down the tree in search of
the key k. If we find a node with key k, we update the mapping and are done.

If k is not yet in the tree, we find a leaf node v where k needs to be inserted. If v has at most 2 keys, we
simply insert k and are done.

Otherwise, we say that v overflows. In this case we split the node v into two nodes v1 and v2, with two
keys each (including the new key k). To be able to add both as children to v’s parent p, we need to move
one of the four keys up to p, increasing the number of keys in p. As a result, p may overflow, and we have
to repeat the process.

The process ends when no overflow happens, or if we reach the root node. If the root node overflows, we
simply create a new root, and the height of the tree increases by one.

Adding a mapping (top-down). The bottom-up method has the disadvantage that we need to walk
down and up again in the tree. It is possible to avoid the second walk up, using top-down insertions. These
can be implemented without recursion using a simple loop.

As we walk down the tree, we sometimes modify nodes of the tree. Specifically, whenever we encounter
a 3-key node, the middle key is ejected and is placed in the parent node instead. Since the parent was
previously treated the same way, the parent has at most two keys, and always has room for a third. The
other two keys in the 3-key node are split into two separate 1-key nodes, which are divided underneath the
old middle key.

The reasons why we split every 3-key node we encounter (and move its middle key up one level) are (1)
to make sure there’s room for the new key in the leaf node, and (2) to make sure that above the leaves,
there’s room for any key that gets kicked upstairs. Sometimes, an insertion operation increases the height
of the tree by one by creating a new root.

Removing a key (top-down). Removing a key from a 2-3-4-tree is similar to removing a key in binary
trees: you find the entry you want to remove (having key k). If it’s in a leaf, you remove it. If it’s in an
internal node, you replace it with the entry with the next higher key. That entry is always in a leaf. In
either case, you remove an entry from a leaf in the end.

Like insertions, deletions change nodes of the tree as we walk down. Whereas insertions eliminate 3-key
nodes (moving nodes up the tree) to make room for new keys, deletions eliminate 1-key nodes (pulling keys

11

down the tree) so that a key can be removed from a leaf without leaving it empty. There are three ways
1-key nodes (except the root) are eliminated.

Stealing. When we encounter a 1-key node (except the root), we try to steal a key from an adjacent
sibling. But we can’t just steal the sibling’s key without violating the search tree invariant. We move a
key from the sibling to the parent, and we move a key from the parent to the 1-key node. We also move a
subtree S from the sibling to the 1-key node (now a 2-key node).

Note that we can’t steal a key from a non-adjacent sibling.
Fusion. If no adjacent sibling has more than one key, we can’t steal. In this case, the 1-key node steals

a key from its parent. Since the parent was previously treated the same way (unless it’s the root), it has at
least two keys, and can spare one. The sibling is also absorbed, and the 1-key node becomes a 3-key node.

If the parent is the root and contains only one key, then the current 1-key node, its 1-key sibling, and
the 1-key root are fused into one 3-key node that serves as the new root. The height of the tree decreases
by one.

Eventually we reach a leaf. After processing the leaf, it has at least two keys (if there are at least two
keys in the tree), so we can delete the key and still have one key in the leaf.

Analysis. A 2-3-4 tree with height h has between 2h and 4h leaves. If n is the total number of nodes
(including internal nodes), then n > 2h+1 − 1. By taking the logarithm of both sides, we find that h =
O(log n).

The time spent visiting a 2-3-4 node is typically longer than in a binary search tree (because the nodes
and the rotation and fusion operations are complicated), but the time per node is still in O(1).

The number of nodes visited is proportional to the height of the tree. Hence, the running times of
searching, insertions, and deletions are in O(h) and hence in O(log n), even in the worst case.

Red-black trees

The disadvantage of 2-3-4-trees is that managing nodes becomes rather complex, and depends on the number
of elements stored in the node. A red-black tree is an implementation of 2-3-4-trees as a normal binary search
tree, with the only addition of one bit per node, used to mark a node as either black or red.

To convert a 2-3-4-tree to a red-black tree, we replace each node w of the 2-3-4-tree by a small binary
search tree Tw. If w contains one element, then Tw is simply one black node. If w contains two elements,
then Tw consists of two nodes, a black root and a red child (note that there are two possible ways of doing
this). If w contains three elements, then Tw consists of three nodes, a black root with two red children.

We observe that the resulting tree has the following properties:

• The root is black.
• The parent of a red node is black.
• Every path from the root to an empty subtree contains the same number of black nodes.

The last property follows from the fact that the number of black nodes on the path is the number of
2-3-4-nodes that the path passes through, and all the leaves in a 2-3-4-tree are on the same level.

We can define a red-black-tree as a binary search tree where each node is either red or black and which
satisfies the three conditions above. It is easy to see that every such tree can be converted to an equivalent
2-3-4-tree. It follows that the height of a red-black tree is at most 2 log n.

Searching a red-black tree is easy, since it is a binary search tree. To implement insertions and deletions,
we imitate the operations for 2-3-4-trees.

Bottom-up insertions. We first find the empty subtree where the new key belongs, and replace it by a
red node w. This corresponds to inserting the key into a leaf of the 2-3-4-tree.

If w’s parent is black, we are already done (the 2-3-4-node has enough space to store the new element).
Otherwise, we first look at the uncle u of w. (The uncle is the sibling of w’s parent.)

12

If the uncle is black, then we can fix the problem by a rotation. (This is the case where the 2-3-4-node had
enough space for a new element, but we have to restructure its subtree to keep the correct representation.)

If the uncle is red, this means that the 2-3-4-node has overflowed, and we need to split it. We do this by
changing the color of w’s parent and w’s uncle to black, and the color of w’s grandparent v to red. In other
words, the node v is “kicked up” into the parent 2-3-4-node. Of course this could mean that this node now
overflows, and so we have to repeat the process, with v taking the role of w. Note that if v is the root, then
we immediately change its color back to black, and we are done.

This algorithm can be explained without mentioning 2-3-4-trees at all. One can show its correctness
simply by arguing that it maintains the three properties of red-black-trees.

Top-down insertions and deletions. Like for 2-3-4-trees, insertions and deletions can be implemented
by walking through the tree from the root to an empty subtree. When a black node v has two red children,
we immediately split it, by recoloring v red and its children black. If v’s parent is red, its uncle must be
black, and so we can use a rotation to fix the red-black-property. If v is the root, we immediately recolor it
black.

To implement deletions, we can again imitate the algorithm for 2-3-4-trees. We leave this as an exercise
for the reader.

Acknowledgments

These notes are based on the notes written by Jonathan Shewchuk for his course at UC Berkeley. All
mistakes are mine, of course.

13

