
Algorithm Analysis

Algorithm

An algorithm is a finite set of well-defined instructions that takes some set of values as input and produces
some set of values as output to solve a problem. An algorithm is thus a sequence of computational steps
that transform the input into the output.

Computational Complexity

Suppose computers were infinitely fast and computer memory was free. Would you have any reason to study
algorithms? The answer is yes, if for no other reason than that you would still like to demonstrate that your
solution method terminates and does so with the correct answer.

If computers were infinitely fast, any correct method for solving a problem would do. You would probably
want your implementation to be within the bounds of good software engineering practice, but you would
most often use whichever method was the easiest to implement.

Of course, computers cannot be infinitely fast, and memory cannot be free. Computing time is therefore
a bounded resource, and so is space in memory. These resources should be used wisely, and algorithms
that are efficient in terms of time or space will help you do so. Therefore, given several algorithms to solve
a problem, we want to determine the amount of memory they use and how much time they require, so
that we can choose the most efficient algorithm among them. This is called an algorithm analysis. So we
introduce the term complexity, or efficiency to analyze algorithms. And there are two major complexities.
Time complexity and space complexity, which are respectively how many steps does it take to perform a
computation, and how much memory is required to perform that computation.

Analyzing an algorithm: Maximum Contiguous Subsequence Sum Problem

Analyzing an algorithm has come to mean predicting the resources (time, memory and etc.) that the
algorithm requires. And most often it its computation time that we want to measure. Here, we give
several algorithms to solve the problem called Maximum Contiguous Subsequence Sum and analyze them to
determine which algorithm is efficient, or which algorithm has the smallest time complexity.

The problem is defined as following:

Maximum Contiguous Subsequence Sum problem:
Given an array with integers a1, a2, . . . , an,

find the maximum value of
∑j

k=i ak,
over all possible choices of i and j.

For instance, if the input is {−2,11, -4, 13,−5, 2}, then the answer is 20, which represents the contiguous
subsequence encompassing items 11,−4, 13 (shown in boldface type).

The time taken by an algorithm solving this problem depends on the size of the input: finding the
maximum value in sequence of thousand numbers takes longer than finding the answer for five numbers. In
general, the time taken by an algorithm grows with the size of the input.

The naive algorithm

There is an obvious solution to the problem: Just compute the sum for each possible subsequence, and take

the largest one. We first note that the number of subsequences is
(
n
2

)
+ n = n2

2 + n
2 .

var maxSum = 0

for (i <- 0 until a.length) {

1



for (j <- i until a.length) {

var sum = 0

for (k <- i to j)

sum += a(k)

if (sum > maxSum)

maxSum = sum

}

}

Analysis. We will only count the number of additions performed by the algorithm, that is, how often the
line

sum += a(k)

is executed. The number of additions is

n−1∑
i=0

n−1∑
j=i

(j − i + 1) =

n−1∑
i=0

(1 + 2 + · · ·+ (n− i)) =

n−1∑
i=0

(n− i)(n− i + 1)

2
=

n∑
k=1

k(k + 1)

=

n∑
k=1

k2 +

n∑
k=1

k =
n(n + 1)(2n + 1)

6
+

n(n + 1)

2
=

n3

3
+ n2 +

2n

3
.

The faster algorithm

If we think about it for a moment, we realize that the sum for the subsequence from i to j can be obtained
from the sum for the subsequence from i to j − 1 with only one addition, namely

∑j
k=i ak = aj +

∑j−1
k=i ak.

We can therefore removing the innermost loop and obtain the following code.

var maxSum = 0

for (i <- 0 until a.length) {

var sum = 0

for (j <- i until a.length) {

sum += a(j)

if (sum > maxSum)

maxSum = sum

}

}

Analysis. Again we only count additions, and obtain the result

n−1∑
i=0

(n− i) = n + (n− 1) + · · ·+ 1 =

n∑
i=1

k =
n2

2
+

n

2
.

We note that this is exactly the number of possible subsequences, so this seems already quite good: we only
look at each subsequence once.

A recursive algorithm

But it turns out we can do better. We use a standard recursive algorithm design technique called divide and
conquer. In general, divide and conquer consists of the following three steps:

1. Split the problem into smaller instances of the same problem.

2. Solve the subproblems recursively.

2



3. Combine the solutions to the subproblems to solve the original problem.

We apply this to the Maximum Contiguous Subsequence Sum problem: We split the original sequence in
the middle, and obtain two smaller sequences of half the size. We note that one of the following three cases
must hold:

• The maximal subsequence is in the left half.
• The maximal subsequence is in the right half.
• The maximal subsequence begins in the left half and ends in the right half.

We implement this as follows:

def maxSumRec(a: Array[Int], left: Int, right: Int): Int = {

if (left == right) { // base case

if (a(left) > 0)

a(left)

else

0

} else {

val center = (left + right) / 2

val maxLeftSum = maxSumRec(a, left, center)

val maxRightSum = maxSumRec(a, center + 1, right)

var maxLeftBorderSum = 0

var maxRightBorderSum = 0

var leftBorderSum = 0

var rightBorderSum = 0

for (i <- center to left by -1) {

leftBorderSum += a(i)

if (leftBorderSum > maxLeftBorderSum)

maxLeftBorderSum = leftBorderSum

}

for (i <- center + 1 to right) {

rightBorderSum += a(i)

if (rightBorderSum > maxRightBorderSum)

maxRightBorderSum = rightBorderSum

}

maxLeftSum max maxRightSum max (maxLeftBorderSum + maxRightBorderSum)

}

}

Analysis. The key insight is that it takes only n
2 + n

2 = n additions to compute the maximal subsequence
that begins in the left half and ends in the right half.

So, let us define T (n) to be the number of additions for n elements. Then,

T (n) =

{
0 if n = 1
T (n

2 ) + T (n
2 ) + n = 2T (n

2 ) + n otherwise

We claim that T (2k) = k2k. We prove this by induction:

1. Base case: If k = 0 then T (20) = T (1) = 0 = 0 · 20.
√

3



2. Inductive step: If k > 0 we assume that T (2k−1) = (k − 1) · 2k−1 holds.
Then, T (2k) = 2T (2k−1) + 2k = 2(k − 1) · 2k−1 + 2k = k · 2k.

√

If we express this again in terms of the input size n, we get T (n) = n log n.

Comparing the algorithms

We implement and run all the algorithms. For n > 100 the recursive algorithm is fastest.
This is not surprising. For n = 106, for instance, the first algorithm needs roughly 3 · 1017 additions, the

second one 5 · 1011, and the recursive algorithm less than 2 · 107. If we assume that our processor can do
109 additions per second (one addition per cycle on a 1 GHz processor), that means that the first algorithm
needs 3 · 108 seconds (about 10 years), the second one 500 seconds (about 8 minutes), and the recursive one
only 20 milliseconds.

Interestingly, for n = 10 the second algorithm is fastest, even though it performs 55 additions, while the
recursive algorithm only needs about 30 additions. The reason the recursive algorithm is a bit slower is that
it contains more overhead in the form of recursive function calls.

Can we do better?

It is in fact possible to solve the problem even faster, with a number of additions linear in n. We leave this
as an exercise to the reader. :-)

Analyzing an algorithm

To compare which algorithm is faster, one method is to write a program implementing the algorithm and
run on real machines.

But this measurement have several limitations. To use this measurement we should implement the
algorithm. Implementation may be time-consuming or difficult, and the algorithm may have undiscovered
drawbacks for untested inputs. If we are going to compare two algorithms, we should use the same hardware
and software environment. If we are going to compare a new algorithm with an old algorithm, we need to
install the same environment where the old algorithm was tested, or reimplement the old algorithm and run
in the new computer environment. To compare several algorithms, we need to and run them all. Finally, we
need to make sure that we have test cases that are representative of the algorithms behavior.

Theoretical analysis

The idea of theoretical analysis is to count the primitive operations that an algorithm executes in the worst
case on an input of size n. Examples of primitive operations are:

• Assigning a value to a variable
• Calling a method
• Arithmetic operations (e.g. adding two numbers)
• Indexing into an array
• Following a reference
• Returning from a method

For example, assume that there are n elements in a linked list, and we execute this function to compute
the last element in the list L:

def last(L: Node): String = {

Node p = L

while (p.tail != null)

p = p.tail

p.head

}

4



The first line is one primitive operation (an assignment), the last line is two primitive operations (following
a reference and returning from a method). The loop body (line 4) consists of two primitive operations, and
is executed n − 1 times. The loop condition is two primitive operations, and is executed n times. In total,
we have counted 4n + 1 primitive operations.

All primitive operations take constant time on modern computers. Depending on the speed of the
processor, on the processor and computer architecture, and the current caching status, this may be 10
nanoseconds or several hundreds of nanoseconds, but the difference is a reasonably small factor. So counting
primitive operations is helpful to estimate the running time. Let’s assume that the fastest primitive operation
takes time a and the slowest operation takes time b. If the algorithm uses P (n) primitive operations, then
its running time T (n) is bounded by:

aP (n) 6 T (n) 6 bP (n)

Growth rate

In fact, instead of the specific funning time for a given size of problem, we are actually more interested in
the growth rate of the running time. The growth rate indicates how fast the running time increases when
the size of input increases.

Why is this important? Because the growth rate determines the scaling behavior. The scaling behavior
is how the running time changes when the size of input multiplies by some factor. Inversely, it is related to
the size of input we can solve in a time interval when performance of the computer increases by some factor.

There are problems with great amount of input size. 3D graphics is an example. We should handle
hundred million triangles to draw. If the scaling factor of the algorithm is bad, although computing speed
goes faster, only little size of input would increases. Although you may think that algorithms are not
important because computing speed increases rapidly, algorithm is even more important to increase the
input size to be processed.

Time complexity Problem size after speedup
n 10s
n2 3.16s
n3 2.15s
2n s + 3.3

Table 1: solvable problem size after 10-times speedup

The table above shows how much larger the input we can solve in the same time becomes if the computer
becomes 10 times faster. If the time complexity is linear, we can solve a 10-times-larger problem. If the
complexity is exponential, for instance 2n, then the size of problem we can solve does not grow by some
factor. Only problems with size s + log(10) ' s + 3.3 can be solved, where s is the size of the original
problem.

Big-Oh notation

Big-Oh notation represents the growth rate of an algorithm. Big-Oh notation shows the comparison result
of the growth rate of two function.

Definition Let f(n), g(n) be functions from {1, 2, 3, 4, ...} to R. We say that f(n) is O(g(n)) if there is a
real constant c > 0 and an integer n0 > 1 such that

f(n) 6 cg(n) for n > n0.

For example, since 4n+1 6 5n for n > 1, 4n+1 = O(n). This is not the only way to show that 4n+1 = O(n).
Since 4n + 1 6 4.1n for n > 10, 4n + 1 = O(n).

5



Let’s prove that 2n2 + 3n+ 5 = O(n2). Since n 6 n2 for n > 1 and 1 6 n2 for n > 1, 2n2 + 3n+ 5 6 10n2

for n > 1. So 2n2 + 3n + 5 = O(n2).
Since 2n+2 = 4 · 2n 6 5 · 2n for n > 1, 2n+2 = O(2n).

Simplest terms

We want to express the running time in the simplest possible Big-Oh notation. If f(n) = O(g(n)), f(n) =
O(h(n)), you may want to describe the running time in the simpler form between g(n) and h(n), if g(n) =
O(h(n)) and h(n) = O(g(n)).

For any polynomial

f(n) = a0 + a1n + a2n
2 + a3n

3 + · · ·+ adn
d

with ad > 0, f(n) is just O(nd).
Note that log n 6 n for n > 0, so n log n = O(n2).

time complexity the simplest term
5n2 + 3n log n + 2n + 5 O(n2)

20n3 + 10n log n + 5 O(n3)
3 log n + 2 O(log n)

2n+2 O(2n)
2n + 100 log n O(n)

Table 2: time complexities and their simplest forms

A drawback of asymptotic analysis

Even though an algorithm with lower growth rate is faster than an algorithm with higher growth rate when
input size is very large, we cannot say that the algorithm with lower growth rate is always better. Here is an
extreme and unrealistic example: Assume we have three algorithms with running times 10100n, n100, and 2n

for input size n. When n is very large, the first one is the best, the third one is the worst. But such values
of n are completely unrealistic—there are not enough atoms in the universe to represent so much data—and
the exponential algorithm is actually the best algorithm in practice.

Time complexity on several data structures

Since this is a data structure course, we will use algorithms analysis to analysis operations on data structures.
When we look at an abstract data type (ADT), it has several operations (i.e. searching, inserting,

removing, · · · ). Some operations may be used very frequently, and some operations may be used very
infrequently. We often make a trade-off: we optimize only the frequently used operations.

The indexOf(el) method of arrays returns the first element in the array equal to el. How would we
implement this method?

Here is the obvious implementation:

def indexOf(el: T): Int = {

for (i <- 0 until length)

if (apply(i) == el)

return i

-1

}

6



The input size n here is the size of the list. In the worst case, we will not find the object. Since we have
to look at the entire list before we can return -1, the running time is O(n). In the best case, the item would
be in front of the list and it would be found in just one iteration. In this case the running time becomes O(1).

Can we say something about the average case? If the element is not on the list, the method takes
time O(n), so this is not very interesting. What if we take the average over all possible elements that are on
the list? The average number of list positions examined is then

1

n

n−1∑
i=0

i =
1

n
· n(n− 1)

2
=

n− 1

2
= O(n).

Average-time analysis is generally difficult. One problem is to decide on what is the right probability model
for the input.

7


