
CS206 Sorting

Sorting problem: Given a list a with n elements possessing a
total order, return a list with the same elements in
non-decreasing order.

The sorting problem is perhaps the most fundamental problem
in algorithms.

We can sort any kind of element that can be compared (int,
float, str). In other words, we require a total order on the
elements.

There are many direct applications of sorting (catalogs,
reports, file listings, etc.)

CS206 Sorting as a tool

There are also many indirect applications of sorting. For
instance, algorithms can often be made faster by first sorting
the data.

def has_duplicates_sorted(a):

for i in range(len(a)-1):

if a[i] == a[i+1]:

return True

return False

def has_duplicates(a):

return has_duplicates_sorted(sorted(a))

Sorting + linear time!

duplicates2.py

CS206 Selection sort

It’s easy to find the minimum of n numbers:

def find_min_index(a):

mindex = 0

for k in range(1, len(a)):

if a[k] < a[mindex]:

mindex = k

return mindex

This gives immediately a sorting algorithm:
• A list with zero or one element is already sorted.
• Otherwise, find the minimum element, and recursively sort

the remaining n− 1 elements.
• Concatenate the minimum and the sorted remaining

elements.

CS206 Selection sort

def selection_sort(a):

if len(a) <= 1:

return a

k = find_min_index(a)

b = selection_sort(a[:k] + a[k+1:])

return [a[k]]+b

selection0.py

This implementation works, but it creates a lot of lists, copies
a lot of data, and could cause a runtime stack overflow. . .

What is the running time?

CS206 In-place Sorting

Sorting problem: Given a list a with n elements possessing a
total order, return a list with the same elements in
non-decreasing order.

Often we no longer need the original, unsorted data.

In-place Sorting: Given a list a with n elements possessing a
total order, rearrange the elements inside the list into
non-decreasing order.

Saves a lot of memory for huge data. Ideally we want to do
this without creating any other list.

In Python:
• sorted(a) returns a sorted copy of a.
• a.sort() sorts the list a in-place.

CS206 In-place Selection sort

def find_min_index(a, i):

mindex = i

for k in range(i+1, len(a)):

if a[k] < a[mindex]:

mindex = k

return mindex

def selection_sort(a, i):

if j - i <= 1:

return

k = find_min_index(a, i)

t = a[i]

a[i] = a[k]

a[k] = t

selection_sort(a, i+1)

selection1.py

Find index of minimum in a[i:]

Sort a[i:]

Tail recursion!

CS206 In-place selection sort with iteration

def find_min_index(a, i):

mindex = i

for k in range(i+1, len(a)):

if a[k] < a[mindex]:

mindex = k

return mindex

def selection_sort(a):

n = len(a)

for i in range(0, n-1):

k = find_min_index(a, i)

t = a[i]

a[i] = a[k]

a[k] = t

selection2.py

Find index of minimum in a[i:]

This uses only one list (in-place) and cannot have stack overflow, but the
running time is still O(n2).

CS206 Insertion sort

Let’s do it the other way round: Sort n− 1 elements first, then
insert the last element into the sorted sequence.

def insertion_sort(a):

if len(a) <= 1:

return a

b = insertion_sort(a[:-1])

k = sorted_linear_search(b, a[-1])

b.insert(k, a[-1])

return b

insertion0.py

CS206 In-place insertion sort

sort a[:j]

def insertion_sort(a, j):

if j <= 1:

return

insertion_sort(a, j-1)

k = j-1 # remaining element index

x = a[k] # value of remaining element

while k > 0 and a[k-1] > x:

a[k] = a[k-1]

k -= 1

a[k] = x

This is not tail-recursion, but we can still easily make it
iterative.

insertion1.py

CS206 Iterative in-place insertion sort

def insertion_sort(a):

for j in range(2, len(a)+1):

a[:j-1] is already sorted

k = j-1 # remaining element index

x = a[k] # value of remaining element

while k > 0 and a[k-1] > x:

a[k] = a[k-1]

k -= 1

a[k] = x

insertion2.py

Loop invariant allows us to argue the
correctness of the program.

CS206 Bubble Sort

Similar to selection sort, we bring the largest element to the
end:

def bubble_sort(a):

for last in range(len(a), 1, -1):

bubble max in a[:last] to a[last-1]

for j in range(last-1):

if a[j] > a[j+1]:

t = a[j]

a[j] = a[j+1]

a[j+1] = t
Bubble-up phase

If nothing happens during a bubble-up phase, we are done!

bubble1.py

CS206 Bubble sort with early termination

We stop when nothing happens in one phase.

def bubble_sort(a):

for last in range(len(a), 1, -1):

bubble max in a[:last] to a[last-1]

flipped = False

for j in range(last-1):

if a[j] > a[j+1]:

flipped = True

t = a[j]

a[j] = a[j+1]

a[j+1] = t

if not flipped:

return

Effective if the list is already
(nearly) sorted.

What is the worst case
running time?

