
CS206 Binary Search Trees

A binary search tree is a a binary tree where each node stores a
key and the value that belongs to this key.

Search-tree ordering: If k is the key stored in a node v, then
the keys in v’s left subtree are all smaller than k, and the keys
in v’s right subtree are all larger than k.

7

2 9

1 5

3

7

2 9

1 5

3 8

Binary Search Tree Not Binary Search Tree

CS206 Binary search tree operations

get(key) and contains(key): Just follow the path from the
root until we find the key or reach an empty subtree.

firstkey(): Follow the leftmost path.
lastkey(): Follow the rightmost path.

put(key, value): Search for the key. If it does not yet exist,
then add a new leaf.

7

2 9

1 5

3 6

remove(key): Hardest operation, implemented like in rank
tree (distinguish case of 2 children).

CS206 The remove operation

The hardest operation: remove(key).

We use the same strategy as for the RankTree:

First find the node v containing key.
Then there are three cases:

1. Easy case: v is a leaf node.

2. Slightly harder case: v has one child

7

2 9

1 5

3

7

2 9

1

3

CS206 The remove operation

3. If v has two children, then find the leftmost node u in the
right subtree of v. Replace the key and value stored at v with
the key and value from u. Finally, remove the node u.

7

2 9

1 5

3

4

v

u



CS206 The remove operation

3. If v has two children, then find the leftmost node u in the
right subtree of v. Replace the key and value stored at v with
the key and value from u. Finally, remove the node u.

7

9

1 5

4

v 3

CS206 Binary search tree analysis

The running time of all operations is O(h), where h is the
height of the tree.

Unfortunately, we cannot guarantee that the height of the tree
remains small. It depends on the order in which the keys are
inserted.


