
CS109 Word histogram

To compare different authors, or to identify a good match in a
web search, we can use a histogram of a document. It contains
all the words used, and for each word how often it was used.

We want to compute a mapping:

words → N

that maps a word w to the number of times it was used.

CS109 Map data type

We need a container to store pairs of (word, count), that is
Pair<String, Int>.

It should support the following operations:
• insert a new pair (given word and count),
• given a word, find the current count,
• update the count for a word,
• enumerate all the pairs in the container.

This data type is called a map (or dictionary).
A map implements a mapping from some key type to some
value type.

CS109 Creating a map

We can think of a map Map<K,V> as a container for
Pair<K,V> pairs.

>>> val m1 = mapOf(Pair("A", 3), Pair("B", 7))

>>> m1

{A=3, B=7}

However, Kotlin provides a nicer syntax to express the
mapping:

>>> 23 to 19

(23, 19)

>>> "CS109" to "Otfried"

(CS109, Otfried)

>>> val m = mapOf("A" to 7, "B" to 13)

>>> m

{A=7, B=13}

CS109 Querying maps

>>> m["A"]

7

>>> m["B"]

13

>>> m["C"]

null

Return type is actually Int?.

Which means we have to check for null before doing anything
with the value.

Or use the getOrElse method:

>>> m.getOrElse("A") { 99 }

7

>>> m.getOrElse("C") { 99 }

99

CS109 Map methods

Check if key is in map:

>>> "A" in m

true

>>> "C" in m

false

>>> "C" !in m

true

Size of the map and emptiness:

>>> m.size

2

>>> m.isEmpty()

false

>>> m.isNotEmpty()

true

CS109 Looping over elements of the map

We can use a for loop like for lists and arrays, but with two
variables:

>>> fun printMap(m: Map<String, Int>) {

... for ((k,v) in m)

... println("$k --> $v")

... }

>>> printMap(m)

A --> 7

B --> 13

CS109 Mutable maps

We can also use mutable maps:

>>> val m = mutableMapOf("A" to 7, "B" to 13)

>>> println(m)

{A=7, B=13}

>>> m["C"] = 99

>>> println(m)

{A=7, B=13, C=99}

>>> m.remove("A")

7

>>> println(m)

{B=13, C=99}

>>> m["B"] = 42

>>> println(m)

{B=42, C=99}

A useful method: getOrPut

>>> m.getOrPut("B") { 99 }

42

>>> println(m)

{B=42, C=99}

>>> m.getOrPut("D") { 99 }

99

>>> println(m)

{B=42, C=99, D=99}

CS109 Word histogram

fun histogram(fname: String): Map<String, Int> {

val file = java.io.File(fname)

val hist = mutableMapOf<String, Int>()

file.forEachLine {

if (it != "") {

val words = it.split(Regex("[,:;.?!<>()-]+"))

for (word in words) {

if (word == "") continue

val upword = word.toUpperCase()

hist[upword] =

hist.getOrElse(upword) { 0 } + 1

}

}

}

return hist

}

CS109 Printing the map

Iterating over the pairs in a map:

for ((word, count) in h)

println("%20s: %d".format(word, count))

Words show up in a rather random order. We can fix this by
converting the map to a sorted map:

val s = h.toSortedMap()

for ((word, count) in s)

println("%20s: %d".format(word, count))

Maps are implemented using a hash table, which allows
extremely fast insertion, removal, and search, but does not
maintain any ordering on the keys. (Come to CS206 to learn
about hash tables.)

CS109 Pronounciation dictionary

Let’s build a real “dictionary”, mapping English words to their
pronounciation.

We use data from cmudict.txt:

Date: 9-7-94

##

...

ADHERES AH0 D HH IH1 R Z

ADHERING AH0 D HH IH1 R IH0 NG

ADHESIVE AE0 D HH IY1 S IH0 V

ADHESIVE(2) AH0 D HH IY1 S IH0 V

...

CS109 Reading the file

Reading the dictionary file:
fun readPronounciations(): Map<String,String> {

val file = java.io.File("cmudict.txt")

var m = mutableMapOf<String, String>()

file.forEachLine {

l ->

if (l[0].isLetter()) {

val p = l.trim().split(Regex("\\s+"), 2)

val word = p[0].toLowerCase()

if (!("(" in word))

m[word] = p[1]

}

}

return m

}

CS109 Finding homophones

English has many words that are homophones: they sound the
same, like “be” and “bee”, or ”sewing” and ”sowing”.

Create a dictionary mapping pronounciations to words:

fun reverseMap(m: Map<String, String>):

Map<String, Set<String>> {

var r = mutableMapOf<String,MutableSet<String>>()

for ((word, pro) in m) {

val s = r.getOrElse(pro) {

mutableSetOf<String>() }

s.add(word)

r[pro] = s

}

return r

}

CS109 A word puzzle

There are words in English that sound the same if you remove
the first letter: ‘knight’ and ’night’ is an example.

fun findWords() {

val m = readPronounciations()

for ((word, pro) in m) {

val ord = word.substring(1)

if (pro == m[ord])

println(word)

}

Is there a word where you can remove both the first or the
second letter, and it will still sound the same?

