
CS109 Similar functions

Computing the sum of integers:
fun sumInt(a: Int, b: Int): Int {

var s = 0

for (i in a .. b)

s += i

return s

}

Computing the sum of cubes:
fun sumCubes(a: Int, b: Int): Int {

var s = 0

for (i in a .. b)

s += i * i * i

return s

}

CS109

These are special cases of

b∑
i=a

f(i)

for different choices of the function f .

If mathematics has a notation for this, we should have one,
too!

CS109 A higher-order function

(Int) -> Int is the type of a function that maps Int to Int.

fun sum(a: Int, b: Int, f: (Int) -> Int): Int {

var s = 0

for (i in a..b)

s += f(i)

return s

}

In general, a function that maps arguments of types A, B, C to
R has type (A, B, C) -> R.

But how can we provide the function argument to sum?

CS109 Function literals

A literal is programming language syntax to create a nameless
object.

We use literals all the time. Instead of this:

>>> val str: String = "Hello CS109"

>>> val a: Int = 13

>>> println(str); println(a)

we use this:

>>> println("Hello CS109"); println(13)

A literal creates an object (without giving it a name). A
function literal creates a function object.

Function literals are also called anonymous functions or
lambdas.

CS109 Function literals

A function literal or anonymous function creates a function
object without giving it a name.

For example: A function that raises an integer to its cube:

{ x: Int -> x * x * x }

Here, x: Int is the parameter of the function, and x * x * x

is its body.

An anonymous function with several parameters:

{ a: Int, b: Int -> a + b }

A function literal creates a function object without giving it a
name.

CS109 Function objects

Function objects are stored on the heap like all other objects.
Variables can store a reference to a function object. They can
be called like functions:

>>> {x : Int -> x * x * x}

(kotlin.Int) -> kotlin.Int

>>> {x : Int -> x * x * x}(3)

27

>>> val f = {x : Int -> x * x * x}

>>> f(3)

27

>>> f(7)

343

>>> f(-30)

-27000

CS109 Function objects

>>> val g = listOf({ x: Int -> x * x },

... { x: Int -> x * x * x },

... { x: Int -> x * x * x * x })

>>> g[0](2)

4

>>> g[1](2)

8

>>> g2

16

CS109 Summation with function literals

We can now write our summations like this:

>>> sum(1, 100, { x: Int -> x })

5050

>>> sum(1, 100, { x: Int -> x * x * x })

25502500

When the compiler can determine the type of the arguments in
the function literal, we can omit them:

>>> sum(1, 100, { x -> x })

5050

>>> sum(1, 100, { x -> x * x * x })

25502500

(This works because the argument f of sum is a function of
type (Int) -> Int.)

CS109 Syntactic sugar

Kotlin has some more “syntactic sugar” for using function
literals in arguments.

If the function literal is the last argument, we can put it
outside the parentheses:

>>> sum(1, 100) { x -> x }

5050

>>> sum(1, 100) { x -> x * x * x }

25502500

If the function literal has only one argument, we can use the
magic name it:

>>> sum(1, 100) { it }

5050

>>> sum(1, 100) { it * it * it }

25502500

CS109 Higher-Order Functions

Functions like sum are called higher-order functions because
they take another function object as an argument: A function
that works on functions.

Higher-order functions allow us to express ideas such as:
• print a table with a given function
• integrate a function numerically
• find a fixed point of a function.

CS109 Collections have higher-order methods

All collections provide many useful higher-order methods that
allow you to express in one line what otherwise would have to
be a for-loop.

>>> val words= java.io.File("words.txt").readLines()

>>> words.max()

zymurgy

>>> words.maxBy { it.length }

counterdemonstrations

Full literal: { s: String -> s.length }

CS109 Any, all, count, and find

These four methods take a predicate argument: a function
literal that returns true or false.

>>> words.count { "e" !in it }

37641

>>> words.count { "e" in it && "a" in it &&

"o" in it && "i" in it && "u" in it }

598

>>> words.find { "e" in it && "a" in it &&

"o" in it && "i" in it && "u" in it }

aboideau

>>> words.findLast { "e" in it && "a" in it &&

"o" in it && "i" in it && "u" in it }

warehousing

CS109 Any and all

These methods return true or false, and implement the
exists and for all quantifier:

>>> words.all { "qr" !in it }

true

>>> words.all { "qu" !in it }

false

>>> words.any { "qui" in it }

true

>>> words.all { it.length < 25 }

true

>>> words.any { it.length > 21 }

false

>>> words.any { it.length > 20 }

true

CS109 filter

One of the most useful methods: Returns a new list with the
elements for which the predicate is true.

>>> words.filter {"e" in it && "a" in it &&

"u" in it && "i" in it && "o" in it &&

"y" in it }

[abstemiously, adventitiously, aeronautically,

ambidextrously, ...

Combining with other higher-order methods:

>>> words.filter {"e" in it && "a" in it &&

"u" in it && "i" in it && "o" in it &&

"y" in it }.minBy { it.length }

autotypies

CS109 filterNot

Can make the program clearer—it reverses the meaning of the
predicate.

>>> words.filterNot { it.length <= 20 }

[counterdemonstrations, hyperaggressivenesses,

microminiaturizations]

>>> words.filterNot { "a" in it || "e" in it ||

"o" in it || "u" in it || "i" in it }

CS109 The Sieve of Erathosthenes

val n = args[0].toInt()

val sqrtn = Math.sqrt(n.toDouble()).toInt()

var s = (2 .. n).toList()

while (s.first() <= sqrtn) {

val k = s.first()

print("$k ")

s = s.filter { it % k != 0 }

}

println(s.joinToString(separator=" "))

CS109 Transforming a collection

Another very useful tool: Create a new collection from a given
one.

>>> (1 .. 10).map { it * it }

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

>>> words.map { it.toUpperCase() }.take(10)

[AA, AAH, AAHED, AAHING, AAHS, AAL, AALII, AALIIS,

AALS, AARDVARK]

CS109 Convert collection to map

groupBy takes a function object that computes, for each
element of the collection, a key. It returns a map that maps
this key to the original elements.

>>> val m = words.groupBy { it.length }

>>> m[20]

[counterdemonstration, counterdemonstrators,

hypersensitivenesses, microminiaturization,

representativenesses]

CS109 Sorting

Sorting collections is super-useful.

Lists have sorted() and sortedDescending() methods that
return a new list where the elements have been sorted (by their
natural order).

Mutable lists also have sort() and sortDescending methods
that sort the elements inside the list.

sortedBy, sortedByDescending, sortBy, and
sortByDescending allow you to provide a function object to
compute the key for sorting.

>>> words.sortedByDescending { it.length }.take(5)

[counterdemonstrations, hyperaggressivenesses,

microminiaturizations, counterdemonstration,

counterdemonstrators]

