
Classes and objects in Scala

Otfried Cheong

April 17, 2012

1 Classes and objects

Objects are the basis of object-oriented program-
ming. In Scala, every piece of data is an object.
The type of the object determines what you can
do with the object. Classes can contain data (the
state of the object) and methods (what you can do
with the object). You can think about a class as
a blueprint for objects. Once you define a class,
you can create objects from the blueprint using the
keyword new.

2 Consistency

A date consists of three attributes: year, month,
and day, all of them integers. We could thus store a
date as a triple (Int, Int, Int), or using a simple
case class with three attributes.

Both methods, however, do not guarantee that
our date objects will be consistent. Consistency
means that the attributes take on only legal, mean-
ingful values, and that the values of each attribute
are consistent with each other. For instance, a day
value of 31 is consistent with a month value of 3,
but not with a month value of 4. A day value of 29
and a month value of 2 are consistent only if the
year value indicates a leap year.

Here is a Date class that ensures that its state is
always consistent:

val monthLength =

Array(31, 29, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31)

class Date(val year: Int, val month: Int,

val day: Int) {

require(1901 <= year && year <= 2099)

require(1 <= month && month <= 12)

require(1 <= day &&

day <= monthLength(month - 1))

require(month != 2 || day <= 28 ||

(year % 4) == 0)

}

The four require statements inside the class body
are executed every time an object of type Date is

constructed. If the values are okay, nothing hap-
pens. Otherwise require throws an exception,
and we know immediately that something is wrong.
Since the Date object is immutable, the consistent
state that is guaranteed when the object is con-
structed can never be broken and made inconsis-
tent.

It is helpful if objects guarantee that their state is
consistent. It makes it possible for functions work-
ing with the objects to proceed without error check-
ing, and simplifies debugging since we will notice
quickly when something went wrong.

Here are some examples for using Date objects:

scala> var d1 = new Date(2012, 4, 16)

d1: Date = Date@1f6c439

scala> println(d1.year, d1.month, d1.day)

(2012,4,16)

scala> var d2 = new Date(2012, 2, 30)

IllegalArgumentException: requirement failed

3 Methods

In the past, we had functions that took arguments
of a particular type, such as a function date2num

that converted a date, represented as year, month,
and day, into a day index starting on January 1,
1901.

In object-oriented programming, we prefer to
define functions that work on a specific type as
a method of that type. One advantage is that
it clearly documents the available functions for a
given type (for instance, to find out what you can
do with a String, you would look at the list of
methods of the String class). The main advan-
tage, however, will be the possibility of hiding or
protecting information inside the object, as we will
see later.

For the moment, let us add methods to convert
a Date object into a day index, and to return the
day of the week of a Date:

1

val weekday =

Array("Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday",

"Sunday")

class Date(val year: Int, val month: Int,

val day: Int) {

require(1901 <= year && year <= 2099)

require(1 <= month && month <= 12)

require(1 <= day &&

day <= monthLength(month - 1))

require(month != 2 || day <= 28 ||

(year % 4) == 0)

// returns the number of days

// since 1901/01/01 (day 0)

def dayIndex: Int = {

val fourY = (365 + 365 + 365 + 366)

val yearn = year - 1901

var total = 0

total += fourY * (yearn / 4)

total += 365 * (yearn % 4)

for (m <- 0 until month - 1)

total += monthLength(m)

total += day - 1

if (year % 4 != 0 && month > 2)

total -= 1

total

}

def dayOfWeek: String =

weekday((dayIndex + 1) % 7)

}

A method looks like a function definition, but is
placed inside the body of the class. The body of
the method can refer to the names of the object’s
fields as if they were global variables. Of course
they are not: To call a method, we need an object,
and the method refers to the fields of that object:

scala> var d1 = new Date(2012, 4, 16)

d1: Date = Date@1c97c3e

scala> var d2 = new Date(2000, 1, 1)

d2: Date = Date@165de14

scala> d1.dayIndex

res1: Int = 40648

scala> d2.dayIndex

res2: Int = 36159

scala> d1.dayOfWeek

res3: String = Monday

scala> d2.dayOfWeek

res4: String = Saturday

The two methods we wrote here do not take

any arguments, not even empty parentheses, and
so calling them looks exactly like accessing a field
of the object. Scala allows this “uniform access” to
fields and methods—it would be impossible in Java
or C++.

4 Printing pretty dates

Every object in Scala (or Java) can be converted
to a string, and that is what happens when you
look at an object in the interactive mode, or us-
ing println: the object is first converted to a string
using its toString method:

scala> d1

res5: Date = Date@14096e6

scala> val s = d1.toString

s: String = Date@14096e6

By default, the result of this conversion is not
pretty: It contains the name of the class and a
hexadecimal number (a number in base 16) that
identifies the object on the heap.

We can change this by overriding the default def-
inition of the toString method, like this:

class Date(val year: Int, val month: Int,

val day: Int) {

// as before

override def toString: String =

"%s, %s %d, %d".format(dayOfWeek,

monthname(month-1), day, year)

}

Note the keyword override. With this method,
our object looks prettier:

scala> var d1 = new Date(2012, 4, 16)

d1: Date = Monday, April 16, 2012

scala> val s = d1.toString

s: String = Monday, April 16, 2012

scala> println(d1)

Monday, April 16, 2012

5 Operators are methods

In Scala, there is no difference between operators
like + and methods like take—they are all imple-
mented as methods.

Any method that has exactly one argument can
be called using operator syntax. For instance, the
Array[Int] class has a method take(n) to take the
first n elements, and a method :+(el) to add an
element at the end. (Both methods return a new
array, of course, since arrays cannot change their
length.)

2

Here are examples that show that we can call
methods either in method syntax or in operator syn-
tax :

scala> val A = Array(1, 2, 3, 4, 5)

A: Array[Int] = Array(1, 2, 3, 4, 5)

scala> A.take(3)

res0: Array[Int] = Array(1, 2, 3)

scala> A take 3

res1: Array[Int] = Array(1, 2, 3)

scala> A :+ 9

res2: Array[Int] = Array(1, 2, 3, 4, 5, 9)

scala> A.:+(9)

res3: Array[Int] = Array(1, 2, 3, 4, 5, 9)

Let’s add a difference operator - to our Date

class, to return the difference between two dates
as a number of days:

class Date(...) {

// ...

def -(rhs: Date) =

dayIndex - rhs.dayIndex

}

We can now calculate with dates:

scala> val birth = new Date(1993, 7, 9)

birth: Date = Friday, July 9, 1993

scala> val today = new Date(2012, 4, 16)

today: Date = Monday, April 16, 2012

scala> today - birth

res0: Int = 6856

It can be fun to define your own operators, but
don’t go overboard—it is only useful when it makes
the code more readable!

6 Overloading

Scala, like Java and C++ but unlike C, allows the
overloading of method names: It is allowed to have
different methods that have the same name, and
only differ in the type of arguments they accept.
Here is a simple example:

def f(n: Int) {

println("Int " + n)

}

def f(s: String) {

println("String " + s)

}

f(17)

f("CS109")

The compiler correctly determines that f(17) is a
call to the first function, while f("CS109") is a call
to the second function. (This example will not work
if you type it into the interactive mode—you have
to run it as a script!)

We can make use of overloading to add more op-
erators to our Date class. We will allow adding or
subtracting a number of days to a date to obtain a
new date:

class Date(...) {

// ...

def num2date(n: Int): Date = {

val fourY = (365 + 365 + 365 + 366)

var year = 1901 + (n / fourY) * 4

var day = n % fourY

if (day >= 365 + 365 + 365 + 59) {

year += 3

day -= 365 + 365 + 365

} else {

year += (day / 365)

day = day % 365

if (day >= 59)

day += 1

}

var month = 1

while (day >= monthLength(month-1)) {

day -= monthLength(month-1)

month += 1

}

new Date(year, month, day+1)

}

def -(rhs: Date) =

dayIndex - rhs.dayIndex

def +(n: Int): Date =

num2date(dayIndex + n)

def -(n: Int): Date =

num2date(dayIndex - n)

Note that there are two - operators defined for the
Date class. The compiler correctly selects the one
we need depending on the type of the right-hand
side:

scala> val birth = new Date(1992, 8, 21)

birth: Date = Friday, August 21, 1992

scala> val baekil = birth + 100

baekil: Date = Sunday, November 29, 1992

scala> val today = new Date(2012, 4, 16)

today: Date = Monday, April 16, 2012

scala> today - birth

res1: Int = 7178

scala> today - 7178

res2: Date = Friday, August 21, 1992

3

7 Class arguments

Class arguments are the arguments that appear in
paratheses after the class name in the class dec-
laration. Class arguments can be val fields, var

fields, or simply parameters for the construction of
the class.

Here is an immutable Point class. Both class
parameters are val fields:

class Point(val x: Int, val y: Int) {

override def toString: String =

"(%d, %d)".format(x, y)

}

Here is a mutable Rect class to store an axis-
parallel rectangle. The class parameters are var

fields:

class Rect(var corner: Point,

var width: Int,

var height: Int) {

require(width > 0 && height > 0)

override def toString: String =

"[%d ~ %d, %d ~ %d]".format(corner.x,

corner.x + width, corner.y,

corner.y + height)

}

Here is a different version of this Rect class, where
the corner field is defined in the body of the class:

class Rect(x: Int, y: Int, var width: Int,

var height: Int) {

var corner = new Point(x, y)

require(width > 0 && height > 0)

override def toString: String =

"[%d ~ %d, %d ~ %d]".format(corner.x,

corner.x + width, corner.y,

corner.y + height)

}

Every occurrence of val or var in the body of the
class defines a field of the class. Every field has to
be initialized with a starting value, which is used
when the object is constructed.

8 Privacy

Let us define an Accumulator, a counter that starts
with zero, and to which we can add a value:

class Accumulator {

var sum = 0

def add(n: Int) {

sum += n

}

}

The class itself has no class parameters this time,
so no arguments are given when we create objects
with new:

var acc1 = new Accumulator

acc1.add(7)

acc1.add(13)

println(acc1.sum)

9 Privacy

What is not so nice here is that we could acciden-
tally modify the sum-field:

scala> val acc2 = new Accumulator

acc2: Accumulator = Accumulator@5e7663

scala> acc2.add(17)

scala> acc2.add(23)

scala> acc2.sum = 0 // ouch!

scala> acc2.add(19)

scala> acc2.sum

res7: Int = 19

The programmer using the Accumulator class
made a mistake here and set acc2.sum back to
zero—so now the final result is wrong.

This is an example that shows the importance of
privacy. A client—that is, code using our class—
should consider an object as a black box. The client
should not need or want to know about how the
object is implemented, and only use the methods
provided by the object to communicate with it. Our
Accumulator object should have two operations:
adding a number to the current sum, and reading
out the current sum. It should not be possible to
modify the current sum.

We can achieve this by forbidding client code to
access the field sum. To do so, we declare the field to
be private. However, that means that we cannot
access it at all, so we have to add a new method to
be able to read the current value of the counter:

class Accumulator {

private var sum = 0

def add(n: Int) {

sum += n

}

def value: Int = sum

}

Here is how we use it:

4

scala> val acc = new Accumulator

acc: Accumulator = Accumulator@113e371

scala> acc.add(19)

scala> acc.add(4)

scala> acc.sum = 0

<console>:7: error: variable sum cannot

be accessed in Accumulator

scala> println(acc.sum)

<console>:8: error: variable sum cannot

be accessed in Accumulator

scala> println(acc.value)

23

Note how Scala stops us from changing or even
looking at the value of acc.sum.

The private keyword means that the member
can be accessed only from methods inside the class.
You can use it both for fields and for methods. So a
private method is a method that can be called only
from other methods in the same class.

10 Constructors

Often it is not enough to just set the fields to some
initial value when you construct a new object. You
can then write the necessary computations directly
inside the class body. Everything that is not a
method definition is executed when the object is
constructed—but remember that when you declare
a variable with var or val, you are creating a field
of the object.

As an example, let us define a Deck class that
stores a deck of blackjack cards. The cards are
stored in an array field cards. When the Deck ob-
ject is constructed, this array must be filled with
all 52 cards.

val Suits = Array("Clubs", "Spades",

"Hearts", "Diamonds")

val Faces = Array("2", "3", "4", "5",

"6", "7", "8", "9",

"10", "Jack", "Queen",

"King", "Ace")

class Deck {

private val cards = new Array[Card](52)

generateDeck()

private def generateDeck() {

var i = 0

for (suit <- Suits) {

for (face <- Faces) {

cards(i) = new Card(face, suit)

i += 1

}

}

}

}

Note that generateDeck is a private method—it
is only needed when the object is constructed, and
should not be called again by client code.

So far the deck doesn’t let us do much. We want
to be able to draw cards from the top of the deck:

class Deck {

private val cards = new Array[Card](52)

private var count = 52

generateDeck()

def draw(): Card = {

assert(count > 0)

count -= 1

cards(count)

}

private def generateDeck() // not shown

}

We can use the Deck class like this:

val deck = new Deck

for (i <- 1 to 10)

println(deck.draw())

When we run this program, we realize that we for-
got to shuffle the deck. The following final version
fixes this problem.

5

class Deck {

private val cards = new Array[Card](52)

private var count = 52

generateDeck()

shuffleDeck()

private def generateDeck() {

var i = 0

for (suit <- Suits) {

for (face <- Faces) {

cards(i) = new Card(face, suit)

i += 1

}

}

}

private def shuffleDeck() {

for (i <- 1 to 52) {

// 0..i-2 already shuffled

val j = (math.random * i).toInt

val cj = cards(j)

cards(j) = cards(i-1)

cards(i-1) = cj

}

}

def draw(): Card = {

assert(count > 0)

count -= 1

cards(count)

}

}

Now that we have a working deck, we can write
the client code, that is, we can implement the
Blackjack game. Here is the beginning of the game
(you can download the entire program from the
course webpage). Note how easy it is to read this
code, because we have hidden all the complexity of
storing cards and shuffling and managing the deck
inside the Card and Deck classes.

val deck = new Deck()

// initial cards

var player = Array(deck.draw())

println("You are dealt " + player.head)

var dealer = Array(deck.draw())

println("Dealer is dealt a hidden card")

player = player :+ deck.draw()

println("You are dealt " + player.last)

dealer = dealer :+ deck.draw()

println("Dealer is dealt " + dealer.last)

printf("Your total is %d\n",

handValue(player))

11 More constructors?

Sometimes it is useful to have more than one con-
structor for objects. For instance, our Point class
above requires us to provide the coordinates of a
point. But sometimes we have no useful coordi-
nates, we just want to create some point that can be
filled in later. We would just like to say new Point

to get a new Point object, with some default coor-
dinates (both zero, for instance). With the defini-
tion above, this doesn’t work:

scala> class Point(var x: Int, var y: Int)

defined class Point

scala> val p = new Point

error: not enough arguments for

constructor Point: (x: Int,y: Int)Point.

Unspecified value parameters x, y.

The solution is to add a second constructor to
the Point class. A second constructor is defined
like a method with the special name this:

class Point(var x: Int, var y: Int) {

def this() = { this(0, 0) }

override def toString: String =

"Point(" + x + "," + y + ")"

}

Note that the second constructor has no return type
(since it is clear that it must create a Point object.
Inside the second constructor, we must call the pri-
mary constructor of the class. Again, this looks like
a method call with the special name this.

We can now create points without arguments:

scala> var p = new Point

p: Point = Point(0,0)

scala> p.x = 7

scala> p

res0: Point = Point(7,0)

Except to refer to the constructor, the key-
word this has another use in Scala: Inside a
method, this is always a name for the current ob-
ject itself.

6

	Classes and objects
	Consistency
	Methods
	Printing pretty dates
	Operators are methods
	Overloading
	Class arguments
	Privacy
	Privacy
	Constructors
	More constructors?
	The apply method

