
Part I

Airline Scheduling

Airline Scheduling
Problem
Given information about flights that an airline needs to
provide, generate a profitable schedule.

1. Input: detailed information about “legs” of flight.
2. F: set of flights by
3. Purpose: find minimum # airplanes needed.

Example
(i) a set F of flights that have to be served, and (ii) the corresponding graph G
representing these flights.

1: Boston (depart 6 A.M.) - Wash-
ington DC (arrive 7 A.M,).

2: Urbana (depart 7 A.M.) -
Champaign (arrive 8 A.M.)

3: Washington (depart 8 A.M.) -
Los Angeles (arrive 11 A.M.)

4: Urbana (depart 11 A.M.) - San
Francisco (arrive 2 P.M.)

5: San Francisco (depart 2:15
P.M.) - Seattle (arrive 3:15
P.M.)

6: Las Vegas (depart 5 P.M.) -
Seattle (arrive 6 P.M.).
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(i) (ii)

Flight scheduling...
1. Use same airplane for two segments i and j :

(a) destination of i is the origin of the segment j ,
(b) there is enough time in between the two flights.

2. Also, airplane can fly from dest(i) to origin(j)
(assuming time constraints are satisfied).

Example
As a concrete example, consider the flights:

Boston (depart 6 A.M.) - Washington D.C. (arrive 7
A.M,).
Washington (depart 8 A.M.) - Los Angeles (arrive 11
A.M.)
Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

This schedule can be served by a single airplane by adding the
leg “Los Angeles (depart 12 noon)- Las Vegas (1 P,M.)” to
this schedule.



Modeling the problem
1. model the feasibility constraints by a graph.
2. G: directed graph over flight legs.
3. For i and j (legs), (i → j) ∈ E(G) ⇐⇒ same airplane

can serve both i and j .
4. G is acyclic.
5. Q: Can required legs can be served using only k airplanes?

Solution
1. Reduction to computation of circulation.
2. Build graph H.
3. ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4. Set demand at t to k, Demand at s to be −k.
5. Each flight must be served. New edge ei = (ui → vi),

for leg i .
Also `(ei) = 1 and c(ei) = 1.

6. If same plane can so i and j (i.e., (i → j) ∈ E(G)) then
add edge (vi → uj) with capacity 1 to H.

7. Since any airplane can start the day with flight i : add an
edge (s → ui) with capacity 1 to H, ∀i .

8. Add edge (vj → t) with capacity 1 to G, ∀j .
9. Overflow airplanes: “overflow” edge (s → t) with

capacity k.
Let H denote the resulting graph.

Example of resulting graph
The resulting graph H for the instance of airline scheduling show before.
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Lemma
Lemma
∃ way perform all flights of F ≤ k planes ⇐⇒ ∃ circulation
in H.

Proof.
1. Given feasible solution→ translate into valid circulation.
2. Given feasible circulation...
3. ... extract paths from flow.
4. ... every path is a plane.



Extensions and limitations
1. a lot of other considerations:

(i) airplanes have to undergo long term maintenance
treatments every once in awhile,

(ii) one needs to allocate crew to these flights,
(iii) schedule differ between days, and
(iv) ultimately we interested in maximizing revenue.

2. Network flow is used in practice, real world problems are
complicated, and network flow can capture only a few
aspects.

3. ... a good starting point.

Part II

Image Segmentation

Image Segmentation
Input is an image.
Partition image into background and foreground.

(i) (ii)
The (i) input image, and (ii) a possible segmentation of the
image.

What is the input...
1. Input is a bitmap on a grid.
2. Every grid node represents a

pixel
3. Convert grid into a directed

graph G,
4. Input:

(i) N × N bitmap.
G = (V,E).

(ii) ∀ pixel i : foreground value
fi ≥ 0.

(iii) ∀ pixel i : background
value bi .

(iv) ∀i , j adjacent: separation
penalty pij .
(we assume that pij = pji )



Problem statement
Problem
Given input as above, partition V (the set of pixels) into two
disjoint subsets F and B, such that

q(F ,B) =
∑
i∈F

fi +
∑
i∈B

bi −
∑

(i ,j)∈E ,|F∩{i ,j}|=1
pij .

is maximized.
Rewrite q(F ,B) as:

q(F ,B) =
∑
i∈F

fi +
∑
j∈B

bj −
∑

(i ,j)∈E ,|F∩{i ,j}|=1
pij

=
∑
i∈v

(fi + bi)−

∑
i∈B

fi +
∑
j∈F

bj +
∑

(i ,j)∈E ,|F∩{i ,j}|=1
pij

 .

Restating problem...
Maximizing:

q(F ,B) =
∑
i∈v

(fi + bi)−

∑
i∈B

fi +
∑
j∈F

bj +
∑

(i ,j)∈E ,|F∩{i ,j}|=1
pij

 .
Equivalent to minimizing u(F ,B):

u(F ,B) =
∑
i∈B

fi +
∑
j∈F

bj +
∑

(i ,j)∈E ,|F∩{i ,j}|=1
pij . (1)

Solution continued...
1. Compute a minimum cut in a graph. Price = u(F ,B).

2. A toy example: s i t
fi bi

3. two possible cuts in the graph:
(i) ({s, i} , {t}): price bi .

(ii) ({s} , {i , t}): price fi . ). In particular,
4. Every path of length 2 from s to t forces mincut to

choose one of edges.
Mincut “prefers” the edge with lower price.

Solution continued...

1. Two pixel bitmap:
s

i
t

fi
bi

j bjfj

2. Captures background/foreground prices. But... ignores
separation penalties...

3.
s

ifi bi

j bj
fj

tpij pij

4. Price of cut in graph is corresponding value of u(F ,B).
5. mincut-cut in the resulting graph would corresponds to

the required segmentation.



Recap...
1. Given directed grid graph G = (V,E).
2. s, y : add two special source and sink vertices.
3. ∀i ∈ V,: add edge ei = (s → i).

c(ei) = fi .
4. Add e′i = (j → t) with capacity c(e′i ) = bi .
5. ∀i .j adjacent:

assign the capacity pij to the edges (i → j) and (j → i)
H: resulting graph.

Solution continues...
By the above discussion:
Lemma
A minimum cut (F ,B) in H minimizes u(F ,B).
Using the minimum-cut max-flow theorem, we have:
Theorem
One can solve the segmentation problem, in polynomial time,
by computing the max flow in the graph H.

Part III

Projection selection

Project Selection
1. company which can carry out some projects.
2. P: set of possible projects.
3. ∀i ∈ P: a revenue pi .
4. pi > 0 is a profitable project and pi < 0 is a losing

project.
5. There is dependency between projects.
6. G = (P,E): (i → j) ∈ E if and only if j is a

prerequisite for i .



Definition
Definition
A set X ⊂ P is feasible if for all i ∈ X , all the prerequisites
of i are also in X . Formally, for all i ∈ X , with an edge
(i → j) ∈ E , we have j ∈ X .
The profit associated with a set of projects X ⊆ P is
profit(X) =

∑
i∈X pi .

Problem - Project Selection Problem
Select a feasible set of projects maximizing the overall profit.

Project selection example
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The reduction
1. Use mincut again.
2. Add s and t to G.
3. Perform the following modifications:
4. ∀i ∈ P with pi > 0: add edge ei = (s → i).

with c(ei) = pi .
5. ∀j ∈ P with pj < 0: add edge e′j = (j → t).

Set c(e′j ) = −pj .
6. C =

∑
i∈P,pi>0 pi : upper bound on profit.

7. Set capacity of all original (dependency) edges in G to
4C .

Let H denote the resulting network.

Example: Resulting network
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Solution continued
1. X ⊆ P: Set of feasible projects.
2. X ′ = X ∪ {s} and Y ′ = (P \ X) ∪ {t}.
3. Consider the s-t cut (X ′,Y ′) in H.
4. No E(G) is in (X ′,Y ′) since X is a feasible set.

Lemma
Lemma
c(X ′,Y ′) = C −∑

i∈X pi = C − profit(X).

Proof
1. The edges of H are either:

(i) original edges of G,
(ii) emanating from s, and
(iii) edges entering t.

2. X feasible =⇒ no edges of type (i) in cut.
3. Edges entering t contribute:

β =
∑

i∈X and pi<0
−pi .

Proof continued
Proof.
Edges leaving s contribute:

γ =
∑

i /∈X and pi>0
pi =

∑
i∈P,pi>0

pi −
∑

i∈X and pi>0
pi

= C −
∑

i∈X and pi>0
pi ,

by the definition of C . The capacity of the cut (X ′,Y ′) is

β + γ =
∑

i∈X and pi<0
(−pi) +

C −
∑

i∈X and pi>0
pi


= C −

∑
i∈X

pi = C − profit(X),

Lemma
Lemma
If (X ′,Y ′) is a cut with capacity at most C in G, then the set
X = X ′ \ {s} is a feasible set of projects.
Namely, cuts (X ′,Y ′) of capacity ≤ C in H corresponds
one-to-one to feasible sets which are profitable.

Proof.
Since c(X ′,Y ′) ≤ C it must not cut any of the edges of G,
since the price of such an edge is 4C . As such, X must be a
feasible set.



Result
Theorem
If (X ′,Y ′) is a minimum cut in H then X = X ′ \ {s} is an
optimum solution to the project selection problem. In
particular, using network flow the optimal solution can be
computed in polynomial time.

Proof.
Indeed, we use network flow to compute the minimum cut in
the resulting graph H. Note, that it is quite possible that the
most profitable project is still a net loss.
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