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WHAT 1S THE PERMANENT?
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>
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Determinant of A:
det(A) = (aei + bfg + cdh)—(ceg + bdi + afh).
Permanent of A:
per(A) = aei + bfg + cdh + ceg + bdi + afh.

In general, for a n X n matrix A, the determinant of A is
det(A ngn HA i,7(

where 7 ranges over all permutations of {1,...,n}.

The permanent of A is

per(4) = > [T Al ()
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WHAT IS THE SIGNIFICANCE OF THE PERMANENT?

per(A) = Z H A(i, (7))

What is its significance?

For 0 — 1 matrix, view A as adjacency matrix for bipartite graph.

a b c 011
Example: A=|d e f|=]1 01

g h i 11 1
per(A) = aei + bfg + cdh + ceg + bdi + afh

= bfg+cdh+ bdi =3



APPLICATIONS

Some applications of the Permanent:
e Statistical Physics:

e Dimer model of adsorption of diatomic molecules,
o Ice-type models of crystal lattices with hydrogen bonds,

o Computer Vision: Tracking objects

o Number of graphs with specified degree sequence
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Given a graph G = (V, E) with n = |V/] vertices,
let P = perfect matchings of G.

Can we compute |P| in time polynomial in n?

@ Polynomial time algorithm for planar graphs [Kasteleyn '67]
@ #P-complete for bipartite graphs [Valiant '79]
e FPRAS for counting all matchings [Jerrum-Sinclair '89]

o FPRAS for counting perfect matchings of bipartite [JSV '04]
Fastest algorithm: O*(n’) time [BSVV '09]



AGENDA

Main tasks:
@ Count all matchings or generate a random matching.

@ Count perfect matchings or generate a random perfect
matching.
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RANDOM MATCHING

Undirected graph G = (V, E):

Matching = subset of vertex disjoint edges.

Let Q = collection of all matchings of G (of all sizes).

Can we generate a matching uniformly at random from Q?
in time polynomial in n = |V|?



MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).
From a matching X; the transition X; — Xiy1
is defined as follows:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; then set Xi11 = X; \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X¢ J{e}.
@ Otherwise, set Xi11 = X:.

Symmetric and ergodic, hence:
unique stationary distribution 7 is uniform over €.
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AUGMENTED MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).

From a matching X; the transition X; — X1 is defined by:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; then set X;11 = X; \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X J{e}.

@ Slide: If v is unmatched and w is matched (or vice-versa):

@ Let (w, z) denote the matched edge.
® Set X1 = XeU(v,w)\ (w, 2).

@ Otherwise, set X1 = X;.
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How fast does an ergodic MC reach its unique stationary 77

Need to measure distance from 7, use total variation distance.
For distributions 1 and v on set :

dTV w, v Z |M

XGQ
Example: Q = {1,2,3,4}.
puis uniform: (1) = p(2) = p(3) = p(4) = 2
And v has: v(1) = .5,v(2) = .1,v(3) = .15, ( ) .25,

1
drv(p,v) = 5(.25 +.154+.140) =
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Mixing TIME

Consider ergodic MC with states €, transition matrix P, and
unique stationary distribution 7.
For state x € £, time to mix from x:

T(x) = min{t : dpy(P'(x,-),7) < 1/4}

Then, mixing time Tyix = maxy T(x).

Summarizing in words:
mixing time is time to get within distance < 1/4 of 7w from
the worst initial state Xjp.

Choice of constant 1/4 is somewhat arbitrary.
Can "boost” to distance < € in time O(Tpix log(1/e)).

Rapidly mixing if Ty, = poly(n).

Relaxation time Ty, = mixing time from a nice initial ppg.
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How 1O BOUND CONVERGENCE TIME

Underlying directed graph H = (2, Ep) of the Markov chain:
Vertices = states 2
Edges = {M - M : MM € Q,P(M,M’) > 0}.

For a set S C Q where 7(S) < 1/2 denote its conductance by:
(MYP(M, M’
(D(S):Pr(xt+1¢5|X1_-65,Xt'\‘7f'): Z ()’]r((S))
MeS,M'€S
For our chain since 7 is uniform simplifies to:

1 #{of edges from S to S}

v =0 g

Let ¢ = msin ®(S)

Q(1/0) = Ty = O(1/02).
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How 1O BOUND CONDUCTANCE

For every pair I, F € Q define a path v, F along edges of H.
Foredge T = M — M’ € Ep, define its congestion:

ep(T)={(,F): T ey r}

lep(T)|
Let p =
SPTRE |

1
~ 2mp

Proof: For S C Q where |S| < |S|:
|S| x |S| (I, F) pairs where | € S and F € S.
Each T € Ep has at most p|Q| paths thru it.

Hence, > % > % transitions from S to S.

Corollary: Ty = O((mp)?).



MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).

From a matching X; the transition X; — X1 is defined by:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; then set X;11 = X; \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X J{e}.

© Slide: If v is unmatched and w is matched (or vice-versa):

@ Let (w, z) denote the matched edge.
® Set X1 = XeU(v,w)\ (w, 2).

@ Otherwise, set X1 = X;.
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Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:
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Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.
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BoUNDING CONGESTION

Consider a transition T =M — M.
Recall, ecp(T) ={(/,F) :vir> T}

We'll define a map 01 :cp(T) — Q x E.
and 7 is one-to-one.

Hence, |cp(T)| < |Q2] x |E| so congestion satisfies:
maxr [ep(T)|
=————>2<m
1€

Easy to define 7:

nr(l,F)=({nF)JeF\(MuM))
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Transition T =M — M':
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nr(l,F)=(nF)|JleF\(MuM))



ENCODING

Example / and F:

3o

Transition T =M — M’:

ue

nr(l,F)=(InF)|JU®F\(MUMUe))

where ¢ is the first edge of / in the current cycle.
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let P = perfect matchings of G.

Can we design a Markov chain only on P?

What are the transitions?



FIRST IDEA FOR MARKOV CHAIN

For bipartite graph G = (V, E) with n+ n vertices,
let P = perfect matchings of G.

Can we design a Markov chain only on P?
What are the transitions?

Enlarge the states: Near-perfect matchings:

let A/ = matchings of G with exactly 2 unmatched vertices.

Let @ =P( JN.

Run earlier Markov chain restricted to Q.



MARKOV CHAIN FOR PERFECT MATCHINGS

Consider an undirected bipartite graph G = (V, E).

Let Q =PUN.

From a matching X; € Q the transition X; — X;11 is defined by:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; and X; € P then set Xey1 = Xi \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X J{e}.

Q Slide: If v is unmatched and w is matched (or vice-versa):

© Let (w, z) denote the matched edge.
® Set X1 = XeU(v,w)\ (w, 2).

@ Otherwise, set X1 = X:.



BAD EXAMPLE

O T

u v

Key properties:
e |P| =1: Only 1 perfect matching
o |[N|>2"% if uand v unmatched then 2° ways to complete
where s is # of squares.

Conclusion:
Sampling from Q = P |JN may not help for sampling from P.



WEIGHTS ON MATCHINGS

Assign matching M € Q a weight w(M).

Add “Metropolis filter” to the Markov chain so that:
Stationary distribution m(M) o< w(M).
Choose weights so that:
@ 7(P) = 1/poly(n) and every P € P has the same weight.
@ Markov chain has mixing time poly(n).



REVISED MARKOV CHAIN

Consider an undirected bipartite graph G = (V, E).

Let Q =PJN.

From a matching X; € Q the transition X; — X1 is defined by:
@ Choose an edge e = (v, y) uniformly at random from E.
@ Remove: If e € X; and X; € P then set X' = X; \ {e}.
@ Add: If v and y are unmatched in X; then X’ = X; | J{e}.

Q Slide: If v is unmatched and y is matched (or vice-versa):
@ Let (y,z) denote the matched edge.
® Set X' =X U(v,y)\ (v, 2).
@ If X' is defined then:
set X¢11 = X' with probability min{1, w(X")/w(X:)}
O Otherwise, set Xi1 = X;.



Weight of matching M € P UN depends on unmatched vertices.
If M € P then w(M) = 1.
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CHOICE OF WEIGHTS

Weight of matching M € P UN depends on unmatched vertices.
If M € P then w(M) = 1.

Let N(u,v) = {M € N : u and v are unmatched}.

If M € N(u,v) then w(M) = w(u, v) where:

w(u,v) = ﬂ

N (u, V)l

Note: Z w(P) = Z w(N) = |P|

PecpP NeN (u,v)

Hence: 7(P) = 7(N(u,v)) = 1/(n* +1).



RAPID MIXING

Key: for perfect matchings I, F, for T=M — M’ € VI,F
w(w(F) > w(M)w(nr(l,F)).

Yields that Markov chain is rapidly mixing for these weights.
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RAPID MIXING

Key: for perfect matchings I, F, for T=M — M’ € VI,F
w(w(F) > w(M)w(nr(l,F)).

Yields that Markov chain is rapidly mixing for these weights.

Also, if use weights w(u, v) where:

1P P
2 W (v = ") S 2R )

then mixing time slows by a factor of 16.

Key: Can correct slightly wrong weights:
_ [P _ :
If w(u,v) = amrgyy then (N (u, v)) = ar(P) so:
o Generate many samples from 7, and then

e Correct the weights w(u, v).



SIMULATED ANNEALING APPROACH

Input bipartite graph G = (LU R, E) captured by:
complete bipartite K, , with edge activities for y € L,z € R:

)X if(y,2) € E
)\(y,z)—{l if (y,z) e E

Slowly go from A =1 to A = 0.
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SIMULATED ANNEALING APPROACH

Input bipartite graph G = (LU R, E) captured by:
complete bipartite K, , with edge activities for y € [,z € R:

)X if(y,2) € E
)\(y,z)—{l if (y,z) e E

Slowly go from A =1 to A = 0.
Matching M of K, , has activity: A\(M) = H(%Z)E,\/, Ay, 2).
A(P)

Redefine w(u,v) = NNV v))
Algorithm:
Start with A =1 and w(u,v) =nforallue L,v e R.
Repeat until A < 1/n!:

Q Set A= (1- L)\

@ Generate O(n?log n) samples from 7.

@ Correct the weights w(u, v) for all u, v.



SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
3 3 3
3 3 3
3 3 3

@ Start at the complete bipartite graph
@ Slowly remove non-edges:
e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN )




SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
2.33 233 1.75
28 28 35
2.33 233 35

@ Start at the complete bipartite graph
@ Slowly remove non-edges:

e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN )




SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
21 21 131
247 247 5.25
21 21 525

@ Start at the complete bipartite graph
@ Slowly remove non-edges:

e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN )




SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
2.03 2.03 1.14
2.15 2,15 9.125
2.03 2.03 9.125

@ Start at the complete bipartite graph
@ Slowly remove non-edges:

e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN )




SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
2.007 2.007 1.066
2.124 2.124 17.06
2.007 2.007 17.06

@ Start at the complete bipartite graph
@ Slowly remove non-edges:

e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN )




Thank you!
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