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What is the Permanent?

3× 3 example:

A =

 a b c
d e f
g h i


Determinant of A:

det(A) = (aei + bfg + cdh)−(ceg + bdi + afh).

Permanent of A:

per(A) = aei + bfg + cdh + ceg + bdi + afh.

In general, for a n × n matrix A, the determinant of A is

det(A) =
∑
π

sgn(π)
∏
i

A(i , π(i)),

where π ranges over all permutations of {1, . . . , n}.

The permanent of A is

per(A) =
∑
π

∏
i

A(i , π(i))
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What is the significance of the Permanent?

per(A) =
∑
π

∏
i

A(i , π(i))

What is its significance?

For 0− 1 matrix, view A as adjacency matrix for bipartite graph.

Example: A =

 a b c
d e f
g h i

 =

 0 1 1
1 0 1
1 1 1



per(A) = aei + bfg + cdh + ceg + bdi + afh

= bfg + cdh + bdi = 3
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Applications

Some applications of the Permanent:

Statistical Physics:

Dimer model of adsorption of diatomic molecules,
Ice-type models of crystal lattices with hydrogen bonds,

Computer Vision: Tracking objects

Number of graphs with specified degree sequence



What is the Permanent?

Given a graph G = (V ,E ) with n = |V | vertices,

let P = perfect matchings of G .

Can we compute |P| in time polynomial in n?

Polynomial time algorithm for planar graphs [Kasteleyn ’67]

#P-complete for bipartite graphs [Valiant ’79]

Fastest algorithm: O∗(n7) time [BSVV ’09]
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Agenda

Main tasks:

1 Count all matchings or generate a random matching.

2 Count perfect matchings or generate a random perfect
matching.



1 Permanent Definition

2 Random Matching

3 Random Perfect Matching



Random Matching

Undirected graph G = (V ,E ):

Matching = subset of vertex disjoint edges.

Let Ω = collection of all matchings of G (of all sizes).

Can we generate a matching uniformly at random from Ω?
in time polynomial in n = |V |?
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Markov Chain for Matchings

Consider an undirected graph G = (V ,E ).

From a matching Xt the transition Xt → Xt+1

is defined as follows:

1 Choose an edge e = (v ,w) uniformly at random from E .

2 Remove: If e ∈ Xt then set Xt+1 = Xt \ {e}.
3 Add: If v and w are unmatched in Xt then Xt+1 = Xt

⋃
{e}.

4 Otherwise, set Xt+1 = Xt .

Symmetric and ergodic, hence:
unique stationary distribution π is uniform over Ω.

Mixing time = How fast does it reach π?
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Augmented Markov Chain for Matchings

Consider an undirected graph G = (V ,E ).

From a matching Xt the transition Xt → Xt+1 is defined by:

1 Choose an edge e = (v ,w) uniformly at random from E .

2 Remove: If e ∈ Xt then set Xt+1 = Xt \ {e}.
3 Add: If v and w are unmatched in Xt then Xt+1 = Xt

⋃
{e}.

4 Slide: If v is unmatched and w is matched (or vice-versa):
1 Let (w , z) denote the matched edge.
2 Set Xt+1 = Xt

⋃
(v ,w) \ (w , z).

5 Otherwise, set Xt+1 = Xt .



Mixing Time

How fast does an ergodic MC reach its unique stationary π?

Need to measure distance from π, use total variation distance.
For distributions µ and ν on set Ω:

dTV(µ, ν) =
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Example: Ω = {1, 2, 3, 4}.
µ is uniform: µ(1) = µ(2) = µ(3) = µ(4) = .25.
And ν has: ν(1) = .5, ν(2) = .1, ν(3) = .15, ν(4) = .25.

dTV(µ, ν) =
1

2
(.25 + .15 + .1 + 0) = .25
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Mixing Time

Consider ergodic MC with states Ω, transition matrix P, and
unique stationary distribution π.
For state x ∈ Ω, time to mix from x :

T (x) = min{t : dTV(Pt(x , ·), π) ≤ 1/4}

Then, mixing time Tmix = maxx T (x).
Summarizing in words:

mixing time is time to get within distance ≤ 1/4 of π from
the worst initial state X0.

Choice of constant 1/4 is somewhat arbitrary.
Can “boost” to distance ≤ ε in time O(Tmix log(1/ε)).

Rapidly mixing if Tmix = poly(n).

Relaxation time Trel = mixing time from a nice initial µ0.
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How to Bound Convergence Time

Underlying directed graph H = (Ω,EP) of the Markov chain:
Vertices = states Ω
Edges = {M → M ′ : M,M ′ ∈ Ω,P(M,M ′) > 0}.

For a set S ⊂ Ω where π(S) ≤ 1/2 denote its conductance by:

Φ(S) = Pr (Xt+1 6∈ S | Xt ∈ S ,Xt ∼ π) =
∑

M∈S ,M′∈S

π(M)P(M,M ′)

π(S)

For our chain since π is uniform simplifies to:

Φ(S) =
1

m

#{of edges from S to S}
|S |

Let Φ = min
S

Φ(S)

Ω(1/Φ) = Trel = O(1/Φ2).
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How to Bound Conductance

For every pair I ,F ∈ Ω define a path γI ,F along edges of H.

For edge T = M → M ′ ∈ EP, define its congestion:

cp(T ) = {(I ,F ) : T ∈ γI ,F}

Let ρ = max
T∈EP

|cp(T )|
|Ω|

Φ ≥ 1

2mρ

Proof: For S ⊂ Ω where |S | ≤ |S |:

|S | × |S | (I ,F ) pairs where I ∈ S and F ∈ S .
Each T ∈ EP has at most ρ|Ω| paths thru it.

Hence, ≥ |S||S |ρΩ ≥ |S|2ρ transitions from S to S .

Corollary: Trel = O((mρ)2).
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Markov Chain for Matchings

Consider an undirected graph G = (V ,E ).

From a matching Xt the transition Xt → Xt+1 is defined by:

1 Choose an edge e = (v ,w) uniformly at random from E .

2 Remove: If e ∈ Xt then set Xt+1 = Xt \ {e}.
3 Add: If v and w are unmatched in Xt then Xt+1 = Xt

⋃
{e}.

4 Slide: If v is unmatched and w is matched (or vice-versa):
1 Let (w , z) denote the matched edge.
2 Set Xt+1 = Xt

⋃
(v ,w) \ (w , z).

5 Otherwise, set Xt+1 = Xt .



Canonical Paths Definition

Consider a pair of matchings I and F .

Look at their difference: I ⊕ F .

Consists of alternating/augmenting paths and alternating cycles:

Definition of γI ,F :
1 Order components of I ⊕ F by smallest vertex in each.
2 “Unwind” components in order.
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Bounding Congestion

Consider a transition T = M → M ′.

Recall, cp(T ) = {(I ,F ) : γI ,F 3 T}.

We’ll define a map ηT : cp(T )→ Ω× E .
and η is one-to-one.

Hence, |cp(T )| ≤ |Ω| × |E | so congestion satisfies:

ρ =
maxT |cp(T )|

|Ω|
≤ m.

Easy to define η:

ηT (I ,F ) = (I ∩ F )
⋃

(I ⊕ F \ (M ∪M ′))
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Encoding

Example I and F :

Transition T = M → M ′:

ηT (I ,F ) = (I ∩ F )
⋃

(I ⊕ F \ (M ∪M ′∪e0))

where e0 is the first edge of I in the current cycle.



1 Permanent Definition

2 Random Matching

3 Random Perfect Matching



First Idea for Markov Chain

For bipartite graph G = (V ,E ) with n + n vertices,

let P = perfect matchings of G .

Can we design a Markov chain only on P?

What are the transitions?

Enlarge the states: Near-perfect matchings:

let N = matchings of G with exactly 2 unmatched vertices.

Let Ω = P
⋃
N .

Run earlier Markov chain restricted to Ω.
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Markov Chain for Perfect Matchings

Consider an undirected bipartite graph G = (V ,E ).
Let Ω = P

⋃
N .

From a matching Xt ∈ Ω the transition Xt → Xt+1 is defined by:

1 Choose an edge e = (v ,w) uniformly at random from E .

2 Remove: If e ∈ Xt and Xt ∈ P then set Xt+1 = Xt \ {e}.
3 Add: If v and w are unmatched in Xt then Xt+1 = Xt

⋃
{e}.

4 Slide: If v is unmatched and w is matched (or vice-versa):
1 Let (w , z) denote the matched edge.
2 Set Xt+1 = Xt

⋃
(v ,w) \ (w , z).

5 Otherwise, set Xt+1 = Xt .



Bad Example

u v

Key properties:

|P| = 1: Only 1 perfect matching

|N | ≥ 2n/4: if u and v unmatched then 2s ways to complete
where s is # of squares.

Conclusion:
Sampling from Ω = P

⋃
N may not help for sampling from P.



Weights on Matchings

Assign matching M ∈ Ω a weight w(M).

Add “Metropolis filter” to the Markov chain so that:
Stationary distribution π(M) ∝ w(M).

Choose weights so that:

1 π(P) = 1/poly(n) and every P ∈ P has the same weight.

2 Markov chain has mixing time poly(n).



Revised Markov Chain

Consider an undirected bipartite graph G = (V ,E ).
Let Ω = P

⋃
N .

From a matching Xt ∈ Ω the transition Xt → Xt+1 is defined by:

1 Choose an edge e = (v , y) uniformly at random from E .

2 Remove: If e ∈ Xt and Xt ∈ P then set X ′ = Xt \ {e}.
3 Add: If v and y are unmatched in Xt then X ′ = Xt

⋃
{e}.

4 Slide: If v is unmatched and y is matched (or vice-versa):
1 Let (y , z) denote the matched edge.
2 Set X ′ = Xt

⋃
(v , y) \ (y , z).

5 If X ′ is defined then:
set Xt+1 = X ′ with probability min{1,w(X ′)/w(Xt)}

6 Otherwise, set Xt+1 = Xt .



Choice of Weights

Weight of matching M ∈ P ∪N depends on unmatched vertices.

If M ∈ P then w(M) = 1.

Let N (u, v) = {M ∈ N : u and v are unmatched}.

If M ∈ N (u, v) then w(M) = w(u, v) where:

w(u, v) =
|P|

|N (u, v)|

Note:
∑
P∈P

w(P) =
∑

N∈N (u,v)

w(N) = |P|

Hence: π(P) = π(N (u, v)) = 1/(n2 + 1).
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Rapid Mixing

Key: for perfect matchings I ,F , for T = M → M ′ ∈ γI ,F ,

w(I )w(F ) ≥ w(M)w(ηT (I ,F )).

Yields that Markov chain is rapidly mixing for these weights.

Also, if use weights w(u, v) where:

1

2

|P|
|N (u, v)|

≤ w(u, v) ≤ 2
|P|

|N (u, v)|

then mixing time slows by a factor of 16.

Key: Can correct slightly wrong weights:

If w(u, v) = α |P|
|N (u,v)| then π(N (u, v)) = απ(P) so:

Generate many samples from π, and then

Correct the weights w(u, v).



Rapid Mixing

Key: for perfect matchings I ,F , for T = M → M ′ ∈ γI ,F ,

w(I )w(F ) ≥ w(M)w(ηT (I ,F )).

Yields that Markov chain is rapidly mixing for these weights.

Also, if use weights w(u, v) where:

1

2

|P|
|N (u, v)|

≤ w(u, v) ≤ 2
|P|

|N (u, v)|

then mixing time slows by a factor of 16.

Key: Can correct slightly wrong weights:

If w(u, v) = α |P|
|N (u,v)| then π(N (u, v)) = απ(P) so:

Generate many samples from π, and then

Correct the weights w(u, v).



Rapid Mixing

Key: for perfect matchings I ,F , for T = M → M ′ ∈ γI ,F ,

w(I )w(F ) ≥ w(M)w(ηT (I ,F )).

Yields that Markov chain is rapidly mixing for these weights.

Also, if use weights w(u, v) where:

1

2

|P|
|N (u, v)|

≤ w(u, v) ≤ 2
|P|

|N (u, v)|

then mixing time slows by a factor of 16.

Key: Can correct slightly wrong weights:

If w(u, v) = α |P|
|N (u,v)| then π(N (u, v)) = απ(P) so:

Generate many samples from π, and then

Correct the weights w(u, v).



Simulated Annealing Approach

Input bipartite graph G = (L ∪ R,E ) captured by:
complete bipartite Kn,n with edge activities for y ∈ L, z ∈ R:

λ(y , z) =

{
λ if (y , z) 6∈ E

1 if (y , z) ∈ E

Slowly go from λ = 1 to λ ≈ 0.

Matching M of Kn,n has activity: λ(M) =
∏

(y ,z)∈M λ(y , z).

Redefine w(u, v) =
λ(P)

λ(N (u, v))
.

Algorithm:
Start with λ = 1 and w(u, v) = n for all u ∈ L, v ∈ R.
Repeat until λ < 1/n!:

1 Set λ = (1− 1
2n )λ.

2 Generate O(n2 log n) samples from π.
3 Correct the weights w(u, v) for all u, v .
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Simulated Annealing Algorithm

Illustration of the algorithm:

weights = 3 3 3
3 3 3
3 3 3



1 Start at the complete bipartite graph
2 Slowly remove non-edges:

Generate many samples from π, and

Recalibrate the weights w(u, v) = λ(P)
λ(N (u,v)) .
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Illustration of the algorithm:

weights = 2.33 2.33 1.75
2.8 2.8 3.5
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1 Start at the complete bipartite graph
2 Slowly remove non-edges:

Generate many samples from π, and
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Simulated Annealing Algorithm

Illustration of the algorithm:

weights = 2.1 2.1 1.31
2.47 2.47 5.25
2.1 2.1 5.25



1 Start at the complete bipartite graph
2 Slowly remove non-edges:

Generate many samples from π, and

Recalibrate the weights w(u, v) = λ(P)
λ(N (u,v)) .



Simulated Annealing Algorithm

Illustration of the algorithm:

weights = 2.03 2.03 1.14
2.15 2.15 9.125
2.03 2.03 9.125



1 Start at the complete bipartite graph
2 Slowly remove non-edges:

Generate many samples from π, and

Recalibrate the weights w(u, v) = λ(P)
λ(N (u,v)) .



Simulated Annealing Algorithm

Illustration of the algorithm:

weights = 2.007 2.007 1.066
2.124 2.124 17.06
2.007 2.007 17.06



1 Start at the complete bipartite graph
2 Slowly remove non-edges:

Generate many samples from π, and

Recalibrate the weights w(u, v) = λ(P)
λ(N (u,v)) .



The end

Thank you!
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