Eric Vigoda

Georgia Tech
KAIST (Spring '15)

Guest lecture for
KAIST CS 500
Graduate Algorithms
Wednesday, March 11, 2015

@ PERMANENT DEFINITION

© RANDOM MATCHING

© RANDOM PERFECT MATCHING

WHAT 1S THE PERMANENT?

3 x 3 example:

>

I
R Qo
o o
- %0

Determinant of A:
det(A) = (aei + bfg + cdh)—(ceg + bdi + afh).
Permanent of A:

per(A) = aei + bfg + cdh + ceg + bdi + afh.

WHAT 1S THE PERMANENT?

3 x 3 example:

>

I
R Qo
o o
- %0

Determinant of A:
det(A) = (aei + bfg + cdh)—(ceg + bdi + afh).
Permanent of A:
per(A) = aei + bfg + cdh + ceg + bdi + afh.

In general, for a n X n matrix A, the determinant of A is
det(A ngn HA i,7(

where 7 ranges over all permutations of {1,...,n}.

The permanent of A is

per(4) = > [T Al ()

WHAT IS THE SIGNIFICANCE OF THE PERMANENT?

per(A) = Z H A(i, (7))

What is its significance?

For 0 — 1 matrix, view A as adjacency matrix for bipartite graph.

WHAT IS THE SIGNIFICANCE OF THE PERMANENT?

per(A) = Z H A(i, (7))

What is its significance?

For 0 — 1 matrix, view A as adjacency matrix for bipartite graph.

a b c 011
Example: A= |d e f|=]1 01
g h i 111

per(A) = aei+ bfg + cdh+ ceg + bdi + afh

WHAT IS THE SIGNIFICANCE OF THE PERMANENT?

per(A) = Z H A(i, (7))

What is its significance?

For 0 — 1 matrix, view A as adjacency matrix for bipartite graph.

a b c 011
Example: A=|d e f|=]1 01

g h i 11 1
per(A) = aei + bfg + cdh + ceg + bdi + afh

= bfg+cdh+ bdi =3

APPLICATIONS

Some applications of the Permanent:
e Statistical Physics:

e Dimer model of adsorption of diatomic molecules,
o Ice-type models of crystal lattices with hydrogen bonds,

o Computer Vision: Tracking objects

o Number of graphs with specified degree sequence

WHAT 1S THE PERMANENT?

Given a graph G = (V, E) with n = |V/| vertices,
let P = perfect matchings of G.

Can we compute |P| in time polynomial in n?

WHAT 1S THE PERMANENT?

Given a graph G = (V, E) with n = |V/] vertices,
let P = perfect matchings of G.

Can we compute |P| in time polynomial in n?

@ Polynomial time algorithm for planar graphs [Kasteleyn '67]
@ #P-complete for bipartite graphs [Valiant '79]
o FPRAS for counting all matchings [Jerrum-Sinclair "89]

o FPRAS for counting perfect matchings of bipartite [JSV '04]
Fastest algorithm: O*(n’) time [BSVV '09]

WHAT 1S THE PERMANENT?

Given a graph G = (V, E) with n = |V/] vertices,
let P = perfect matchings of G.

Can we compute |P| in time polynomial in n?

@ Polynomial time algorithm for planar graphs [Kasteleyn '67]
@ #P-complete for bipartite graphs [Valiant '79]
e FPRAS for counting all matchings [Jerrum-Sinclair '89]

o FPRAS for counting perfect matchings of bipartite [JSV '04]
Fastest algorithm: O*(n’) time [BSVV '09]

AGENDA

Main tasks:
@ Count all matchings or generate a random matching.

@ Count perfect matchings or generate a random perfect
matching.

@ PERMANENT DEFINITION

© RANDOM MATCHING

© RANDOM PERFECT MATCHING

RANDOM MATCHING

Undirected graph G = (V, E):

Matching = subset of vertex disjoint edges.

Let Q = collection of all matchings of G (of all sizes).

RANDOM MATCHING

Undirected graph G = (V, E):

Matching = subset of vertex disjoint edges.

Let Q = collection of all matchings of G (of all sizes).

Can we generate a matching uniformly at random from Q?
in time polynomial in n = |V|?

MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).
From a matching X; the transition X; — Xiy1
is defined as follows:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; then set Xi11 = X; \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X¢ J{e}.
@ Otherwise, set Xi11 = X:.

Symmetric and ergodic, hence:
unique stationary distribution 7 is uniform over €.

MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).
From a matching X; the transition X; — Xiy1
is defined as follows:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; then set Xi11 = X; \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X¢ J{e}.
@ Otherwise, set Xi11 = X:.

Symmetric and ergodic, hence:
unique stationary distribution 7 is uniform over €.

Mixing time = How fast does it reach 7?7

AUGMENTED MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).

From a matching X; the transition X; — X1 is defined by:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; then set X;11 = X; \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X J{e}.

@ Slide: If v is unmatched and w is matched (or vice-versa):

@ Let (w, z) denote the matched edge.
® Set X1 = XeU(v,w)\ (w, 2).

@ Otherwise, set X1 = X;.

How fast does an ergodic MC reach its unique stationary 77

Mixing TIME

How fast does an ergodic MC reach its unique stationary 77

Need to measure distance from 7, use total variation distance.
For distributions 1 and v on set :

drv(p, v Z |(x

XGQ

Mixing TIME

How fast does an ergodic MC reach its unique stationary 77

Need to measure distance from 7, use total variation distance.
For distributions 1 and v on set :

dTV w, v Z |M

XGQ
Example: Q = {1,2,3,4}.
puis uniform: (1) = p(2) = p(3) = p(4) = 2
And v has: v(1) = .5,v(2) = .1,v(3) = .15, () .25,

1
drv(p,v) = 5(.25 +.154+.140) =

Mixing TIME

Consider ergodic MC with states €, transition matrix P, and
unique stationary distribution 7.
For state x € £, time to mix from x:

T(x) = min{t : dpy(P'(x,-),7) < 1/4}

Mixing TIME

Consider ergodic MC with states €, transition matrix P, and
unique stationary distribution 7.
For state x € £, time to mix from x:

T(x) = min{t : dpy(P'(x,-),7) < 1/4}

Then, mixing time Tyix = maxy T(x).

Summarizing in words:
mixing time is time to get within distance < 1/4 of 7w from
the worst initial state Xjp.

Mixing TIME

Consider ergodic MC with states €, transition matrix P, and
unique stationary distribution 7.
For state x € Q, time to mix from x:

T(x) = min{t : dpy(P'(x,-),7) < 1/4}

Then, mixing time Tyix = max, T(x).

Summarizing in words:
mixing time is time to get within distance < 1/4 of 7w from
the worst initial state Xjp.

Choice of constant 1/4 is somewhat arbitrary.
Can "boost” to distance < € in time O(Tpix log(1/e)).

Mixing TIME

Consider ergodic MC with states €, transition matrix P, and
unique stationary distribution 7.
For state x € £, time to mix from x:

T(x) = min{t : dpy(P'(x,-),7) < 1/4}

Then, mixing time Tyix = maxy T(x).

Summarizing in words:
mixing time is time to get within distance < 1/4 of 7w from
the worst initial state Xjp.

Choice of constant 1/4 is somewhat arbitrary.
Can "boost” to distance < € in time O(Tpix log(1/e)).

Rapidly mixing if Ty, = poly(n).

Relaxation time Ty, = mixing time from a nice initial ppg.

How 1O BOUND CONVERGENCE TIME

Underlying directed graph H = (2, Ep) of the Markov chain:
Vertices = states 2
Edges = {M - M : MM € Q,P(M,M’) > 0}.

How 1O BOUND CONVERGENCE TIME

Underlying directed graph H = (2, Ep) of the Markov chain:
Vertices = states 2
Edges = {M - M : MM € Q,P(M,M’) > 0}.

For a set S C Q where 7(S) < 1/2 denote its conductance by:

O(S)=Pr(Xes1 S| Xe€S Xemm)= Y W
MeS M'eS

Let ¢ = msin ®(S)

How 1O BOUND CONVERGENCE TIME

Underlying directed graph H = (2, Ep) of the Markov chain:
Vertices = states 2
Edges = {M - M : MM € Q,P(M,M’) > 0}.

For a set S C Q where 7(S) < 1/2 denote its conductance by:
(MYP(M, M’
(D(S):Pr(xt+1¢5|X1_-65,Xt'\‘7f'): Z ()’]r((S))
MeS,M'€S
For our chain since 7 is uniform simplifies to:

1 #{of edges from S to S}

v =0 g

Let ¢ = msin ®(S)

How 1O BOUND CONVERGENCE TIME

Underlying directed graph H = (2, Ep) of the Markov chain:
Vertices = states 2
Edges = {M - M : MM € Q,P(M,M’) > 0}.

For a set S C Q where 7(S) < 1/2 denote its conductance by:
(MYP(M, M’
(D(S):Pr(xt+1¢5|X1_-65,Xt'\‘7f'): Z ()’]r((S))
MeS,M'€S
For our chain since 7 is uniform simplifies to:

1 #{of edges from S to S}

v =0 g

Let ¢ = msin ®(S)

Q(1/0) = Ty = O(1/02).

For every pair I, F € Q define a path v, r along edges of H.

How 1O BOUND CONDUCTANCE

For every pair I, F € Q define a path v, F along edges of H.
Foredge T = M — M’ € Ep, define its congestion:

ep(T)={(,F): T ey r}

lep(T)|
Let p =
et p peaé Q

1

b > —
~ 2mp

How 1O BOUND CONDUCTANCE

For every pair I, F € Q define a path v, F along edges of H.
Foredge T = M — M’ € Ep, define its congestion:

ep(T)={(,F): T ey r}

lep(T)|
Let p =
et p peaé Q

1

b > —
~ 2mp

Corollary: Ty = O((mp)?).

How 1O BOUND CONDUCTANCE

For every pair I, F € Q define a path v, F along edges of H.
Foredge T = M — M’ € Ep, define its congestion:

ep(T)={(,F): T ey r}

lep(T)|
Let p =
et p peaé Q

1
~ 2mp

Proof: For S C Q where |S| < |S|:

Corollary: Ty = O((mp)?).

How 1O BOUND CONDUCTANCE

For every pair I, F € Q define a path v, F along edges of H.
Foredge T = M — M’ € Ep, define its congestion:

ep(T)={(,F): T ey r}

lep(T)|
Let p =
et p peaé Q

1
~ 2mp

Proof: For S C Q where |S| < |S|:
|S| x |S| (I, F) pairs where | € S and F € S.

Corollary: Ty = O((mp)?).

How 1O BOUND CONDUCTANCE

For every pair I, F € Q define a path v, F along edges of H.
Foredge T = M — M’ € Ep, define its congestion:

ep(T)={(,F): T ey r}

lep(T)|
Let p =
et p peaé Q

1
~ 2mp

Proof: For S C Q where |S| < |S|:
|S| x |S| (I, F) pairs where | € S and F € S.
Each T € Ep has at most p|Q| paths thru it.

Corollary: Ty = O((mp)?).

How 1O BOUND CONDUCTANCE

For every pair I, F € Q define a path v, F along edges of H.
Foredge T = M — M’ € Ep, define its congestion:

ep(T)={(,F): T ey r}

lep(T)|
Let p =
SPTRE |

1
~ 2mp

Proof: For S C Q where |S| < |S|:
|S| x |S| (I, F) pairs where | € S and F € S.
Each T € Ep has at most p|Q| paths thru it.

Hence, > % > % transitions from S to S.

Corollary: Ty = O((mp)?).

MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).

From a matching X; the transition X; — X1 is defined by:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; then set X;11 = X; \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X J{e}.

© Slide: If v is unmatched and w is matched (or vice-versa):

@ Let (w, z) denote the matched edge.
® Set X1 = XeU(v,w)\ (w, 2).

@ Otherwise, set X1 = X;.

Consider a pair of matchings / and F.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

3o

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

3o

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and aIternating cycles:

i“ ii
i

Definition of v, :

O
O Omm(O

@)

@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and aIternating cycles:

i“ iig
|

Definition of v, :

O
O

@)

@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

O
O

FATEEY

| o— o= |

O Om=O O==O

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

O
O

WX Ty

o—oo—oi

O Om=O O==O

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: [& F.
Consists of alternating/augmenting paths and alternating cycles:

0
O 0

Vgl

i
b o

O Om=O O==O

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: [& F.
Consists of alternating/augmenting paths and alternating cycles:
O
© 0
3 |
o ol

.

O Om=O O==O

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

Eaaith
iofio—oiig

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: [& F.
Consists of alternating/augmenting paths and alternating cycles:
O
O o—0 Y
roT

SWARE

Definition of v, :

O Om=O O==O

@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: [& F.
Consists of alternating/augmenting paths and alternating cycles:
O
O o—0 Y
roT

SWANRE

Definition of v, :

O Om=O O==O

@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:
0 O
A .
i X j 0 i i

—
0 O

Definition of v, :

O

@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and aIternating cycles:
TN g :
Voo
|

O

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:
O
8 — f (\; !
O

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

O

§O_O(/”\;g§
AWEANWEE

@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and aIternating cycles:

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and aIternating cycles:

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

Definition of v, :
@ Order components of / & F by smallest vertex in each.

© “Unwind" components in order.

CANONICAL PATHS DEFINITION

Consider a pair of matchings / and F.
Look at their difference: | @ F.

Consists of alternating/augmenting paths and alternating cycles:

3o

Definition of v, :
@ Order components of /| & F by smallest vertex in each.

@ “Unwind” components in order.

Consider a transition T =M — M.

Recall, cp(T) = {(I,F) : vi,r > T}.

Consider a transition T =M — M.
Recall, cp(T) ={(/,F) :v,Fr> T}

We'll define a map 01 :cp(T) — Q x E.
and 7 is one-to-one.

BoUNDING CONGESTION

Consider a transition T =M — M.
Recall, cp(T) ={(/,F) :vi.F> T}.

We'll define a map 01 :cp(T) — Q x E.
and 7 is one-to-one.

Hence,

cp(T)| < |Q| x |E| so congestion satisfies:

maxr [cp(T)|
=~ 2 <m
€]

BoUNDING CONGESTION

Consider a transition T =M — M.
Recall, ecp(T) ={(/,F) :vir> T}

We'll define a map 01 :cp(T) — Q x E.
and 7 is one-to-one.

Hence, |cp(T)| < |Q2] x |E| so congestion satisfies:
maxr [ep(T)|
=————>2<m
1€

Easy to define 7:

nr(l,F)=({nF)JeF\(MuM))

Example / and F:

Transition T=M — M':

ENCODING

Example / and F:

e

Transition T =M — M':

e

nr(l,F)=(nF)|JleF\(MuM))

ENCODING

Example / and F:

3o

Transition T =M — M’:

ue

nr(l,F)=(InF)|JU®F\(MUMUe))

where ¢ is the first edge of / in the current cycle.

© RANDOM PERFECT MATCHING

FIRST IDEA FOR MARKOV CHAIN

For bipartite graph G = (V, E) with n+ n vertices,
let P = perfect matchings of G.

Can we design a Markov chain only on P?

What are the transitions?

FIRST IDEA FOR MARKOV CHAIN

For bipartite graph G = (V, E) with n+ n vertices,
let P = perfect matchings of G.

Can we design a Markov chain only on P?
What are the transitions?

Enlarge the states: Near-perfect matchings:

let A/ = matchings of G with exactly 2 unmatched vertices.

Let @ =P(JN.

Run earlier Markov chain restricted to Q.

MARKOV CHAIN FOR PERFECT MATCHINGS

Consider an undirected bipartite graph G = (V, E).

Let Q =PUN.

From a matching X; € Q the transition X; — X;11 is defined by:
@ Choose an edge e = (v, w) uniformly at random from E.
@ Remove: If e € X; and X; € P then set Xey1 = Xi \ {e}.
@ Add: If v and w are unmatched in X; then X;11 = X J{e}.

Q Slide: If v is unmatched and w is matched (or vice-versa):

© Let (w, z) denote the matched edge.
® Set X1 = XeU(v,w)\ (w, 2).

@ Otherwise, set X1 = X:.

BAD EXAMPLE

O T

u v

Key properties:
e |P| =1: Only 1 perfect matching
o |[N|>2"% if uand v unmatched then 2° ways to complete
where s is # of squares.

Conclusion:
Sampling from Q = P |JN may not help for sampling from P.

WEIGHTS ON MATCHINGS

Assign matching M € Q a weight w(M).

Add “Metropolis filter” to the Markov chain so that:
Stationary distribution m(M) o< w(M).
Choose weights so that:
@ 7(P) = 1/poly(n) and every P € P has the same weight.
@ Markov chain has mixing time poly(n).

REVISED MARKOV CHAIN

Consider an undirected bipartite graph G = (V, E).

Let Q =PJN.

From a matching X; € Q the transition X; — X1 is defined by:
@ Choose an edge e = (v, y) uniformly at random from E.
@ Remove: If e € X; and X; € P then set X' = X; \ {e}.
@ Add: If v and y are unmatched in X; then X’ = X; | J{e}.

Q Slide: If v is unmatched and y is matched (or vice-versa):
@ Let (y,z) denote the matched edge.
® Set X' =X U(v,y)\ (v, 2).
@ If X' is defined then:
set X¢11 = X' with probability min{1, w(X")/w(X:)}
O Otherwise, set Xi1 = X;.

Weight of matching M € P UN depends on unmatched vertices.
If M € P then w(M) = 1.

CHOICE OF WEIGHTS

Weight of matching M € P UN depends on unmatched vertices.
If M € P then w(M) = 1.
Let N(u,v) = {M € N : u and v are unmatched}.
If M € N(u,v) then w(M) = w(u, v) where:
Ld

w(u,v) = ———

N (u, V)l

CHOICE OF WEIGHTS

Weight of matching M € P UN depends on unmatched vertices.
If M € P then w(M) = 1.

Let N(u,v) = {M € N : u and v are unmatched}.

If M € N(u,v) then w(M) = w(u, v) where:

w(u,v) = ﬂ

N (u, V)l

Note: Z w(P) = Z w(N) = |P|

PecpP NeN (u,v)

Hence: 7(P) = 7(N(u,v)) = 1/(n* +1).

RAPID MIXING

Key: for perfect matchings I, F, for T=M — M’ € VI,F
w(w(F) > w(M)w(nr(l,F)).

Yields that Markov chain is rapidly mixing for these weights.

RAPID MIXING

Key: for perfect matchings I, F, for T=M — M' € v, F,
w(lw(F) = w(M)w(nr(l, F)).
Yields that Markov chain is rapidly mixing for these weights.

Also, if use weights w(u, v) where:

1P P
2 W (v = ") S 2R)

then mixing time slows by a factor of 16.

RAPID MIXING

Key: for perfect matchings I, F, for T=M — M’ € VI,F
w(w(F) > w(M)w(nr(l,F)).

Yields that Markov chain is rapidly mixing for these weights.

Also, if use weights w(u, v) where:

1P P
2 W (v = ") S 2R)

then mixing time slows by a factor of 16.

Key: Can correct slightly wrong weights:
_ [P _ :
If w(u,v) = amrgyy then (N (u, v)) = ar(P) so:
o Generate many samples from 7, and then

e Correct the weights w(u, v).

SIMULATED ANNEALING APPROACH

Input bipartite graph G = (LU R, E) captured by:
complete bipartite K, , with edge activities for y € L,z € R:

)X if(y,2) € E
)\(y,z)—{l if (y,z) e E

Slowly go from A =1 to A = 0.

SIMULATED ANNEALING APPROACH

Input bipartite graph G = (LU R, E) captured by:
complete bipartite K, , with edge activities for y € [,z € R:

wa-{) e
Slowly go from A =1 to A =~ 0.
Matching M of K, , has activity: A\(M) = H(%Z)E,\/, Ay, 2).
A(P)

Redefine w(u,v) = ———"——

AN (u, v))

SIMULATED ANNEALING APPROACH

Input bipartite graph G = (LU R, E) captured by:
complete bipartite K, , with edge activities for y € [,z € R:

)X if(y,2) € E
)\(y,z)—{l if (y,z) e E

Slowly go from A =1 to A = 0.
Matching M of K, , has activity: A\(M) = H(%Z)E,\/, Ay, 2).
A(P)

Redefine w(u,v) = NNV v))
Algorithm:
Start with A =1 and w(u,v) =nforallue L,v e R.
Repeat until A < 1/n!:

Q Set A= (1- L)\

@ Generate O(n?log n) samples from 7.

@ Correct the weights w(u, v) for all u, v.

SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
3 3 3
3 3 3
3 3 3

@ Start at the complete bipartite graph
@ Slowly remove non-edges:
e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN)

SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
2.33 233 1.75
28 28 35
2.33 233 35

@ Start at the complete bipartite graph
@ Slowly remove non-edges:

e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN)

SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
21 21 131
247 247 5.25
21 21 525

@ Start at the complete bipartite graph
@ Slowly remove non-edges:

e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN)

SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
2.03 2.03 1.14
2.15 2,15 9.125
2.03 2.03 9.125

@ Start at the complete bipartite graph
@ Slowly remove non-edges:

e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN)

SIMULATED ANNEALING ALGORITHM

[llustration of the algorithm:

weights =
2.007 2.007 1.066
2.124 2.124 17.06
2.007 2.007 17.06

@ Start at the complete bipartite graph
@ Slowly remove non-edges:

e Generate many samples from 7, and
o Recalibrate the weights w(u,v) = SN)

Thank you!

	Permanent Definition
	Random Matching
	Random Perfect Matching

