
106 Algorithms

Exercises
3.1. Perform a depth-first search on the following graph; whenever there’s a choice of vertices, pick

the one that is alphabetically first. Classify each edge as a tree edge or back edge, and give the
pre and post number of each vertex.

A B C

D E F

G H I

3.2. Perform depth-first search on each of the following graphs; whenever there’s a choice of vertices,
pick the one that is alphabetically first. Classify each edge as a tree edge, forward edge, back
edge, or cross edge, and give the pre and post number of each vertex.

(a)

F

A CB

E D

G H

(b)
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D

3.3. Run the DFS-based topological ordering algorithm on the following graph. Whenever you have
a choice of vertices to explore, always pick the one that is alphabetically first.

A

C

E

D

F

B

G

H

(a) Indicate the pre and post numbers of the nodes.
(b) What are the sources and sinks of the graph?
(c) What topological ordering is found by the algorithm?
(d) How many topological orderings does this graph have?

3.4. Run the strongly connected components algorithm on the following directed graphs G. When
doing DFS on GR: whenever there is a choice of vertices to explore, always pick the one that is
alphabetically first.
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(i) A

B
E

G H

I

C D

F

J

(ii)

A B C

D E F

G H I

In each case answer the following questions.

(a) In what order are the strongly connected components (SCCs) found?
(b) Which are source SCCs and which are sink SCCs?
(c) Draw the “metagraph” (each meta-node is an SCC of G).
(d) What is the minimum number of edges you must add to this graph to make it strongly

connected?

3.5. The reverse of a directed graph G = (V,E) is another directed graph GR = (V,ER) on the same
vertex set, but with all edges reversed; that is, ER = {(v, u) : (u, v) ∈ E}.
Give a linear-time algorithm for computing the reverse of a graph in adjacency list format.

3.6. In an undirected graph, the degree d(u) of a vertex u is the number of neighbors u has, or equiv-
alently, the number of edges incident upon it. In a directed graph, we distinguish between the
indegree din(u), which is the number of edges into u, and the outdegree dout(u), the number of
edges leaving u.

(a) Show that in an undirected graph,
∑

u∈V d(u) = 2|E|.
(b) Use part (a) to show that in an undirected graph, there must be an even number of vertices

whose degree is odd.
(c) Does a similar statement hold for the number of vertices with odd indegree in a directed

graph?

3.7. A bipartite graph is a graphG = (V,E) whose vertices can be partitioned into two sets (V = V1∪V2

and V1 ∩ V2 = ∅) such that there are no edges between vertices in the same set (for instance, if
u, v ∈ V1, then there is no edge between u and v).

(a) Give a linear-time algorithm to determine whether an undirected graph is bipartite.
(b) There are many other ways to formulate this property. For instance, an undirected graph

is bipartite if and only if it can be colored with just two colors.
Prove the following formulation: an undirected graph is bipartite if and only if it contains
no cycles of odd length.

(c) At most how many colors are needed to color in an undirected graph with exactly one odd-
length cycle?
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3.8. Pouring water. We have three containers whose sizes are 10 pints, 7 pints, and 4 pints, re-
spectively. The 7-pint and 4-pint containers start out full of water, but the 10-pint container is
initially empty. We are allowed one type of operation: pouring the contents of one container into
another, stopping only when the source container is empty or the destination container is full.
We want to know if there is a sequence of pourings that leaves exactly 2 pints in the 7- or 4-pint
container.

(a) Model this as a graph problem: give a precise definition of the graph involved and state the
specific question about this graph that needs to be answered.

(b) What algorithm should be applied to solve the problem?
(c) Find the answer by applying the algorithm.

3.9. For each node u in an undirected graph, let twodegree[u] be the sum of the degrees of u’s neigh-
bors. Show how to compute the entire array of twodegree[·] values in linear time, given a graph
in adjacency list format.

3.10. Rewrite the explore procedure (Figure 3.3) so that it is non-recursive (that is, explicitly use a
stack). The calls to previsit and postvisit should be positioned so that they have the same
effect as in the recursive procedure.

3.11. Design a linear-time algorithm which, given an undirected graph G and a particular edge e in it,
determines whether G has a cycle containing e.

3.12. Either prove or give a counterexample: if {u, v} is an edge in an undirected graph, and during
depth-first search post(u) <post(v), then v is an ancestor of u in the DFS tree.

3.13. Undirected vs. directed connectivity.

(a) Prove that in any connected undirected graph G = (V,E) there is a vertex v ∈ V whose
removal leaves G connected. (Hint: Consider the DFS search tree for G.)

(b) Give an example of a strongly connected directed graph G = (V,E) such that, for every
v ∈ V , removing v from G leaves a directed graph that is not strongly connected.

(c) In an undirected graph with 2 connected components it is always possible to make the graph
connected by adding only one edge. Give an example of a directed graph with two strongly
connected components such that no addition of one edge can make the graph strongly con-
nected.

3.14. The chapter suggests an alternative algorithm for linearization (topological sorting), which re-
peatedly removes source nodes from the graph (page 101). Show that this algorithm can be
implemented in linear time.

3.15. The police department in the city of Computopia has made all streets one-way. The mayor con-
tends that there is still a way to drive legally from any intersection in the city to any other
intersection, but the opposition is not convinced. A computer program is needed to determine
whether the mayor is right. However, the city elections are coming up soon, and there is just
enough time to run a linear-time algorithm.

(a) Formulate this problem graph-theoretically, and explain why it can indeed be solved in
linear time.
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3.22. Give an efficient algorithm which takes as input a directed graph G = (V,E), and determines
whether or not there is a vertex s ∈ V from which all other vertices are reachable.

3.23. Give an efficient algorithm that takes as input a directed acyclic graph G = (V,E), and two
vertices s, t ∈ V , and outputs the number of different directed paths from s to t in G.

3.24. Give a linear-time algorithm for the following task.

Input: A directed acyclic graph G
Question: Does G contain a directed path that touches every vertex exactly once?

3.25. You are given a directed graph in which each node u ∈ V has an associated price pu which is a
positive integer. Define the array cost as follows: for each u ∈ V ,

cost[u] = price of the cheapest node reachable from u (including u itself).

For instance, in the graph below (with prices shown for each vertex), the cost values of the
nodes A,B,C,D,E, F are 2, 1, 4, 1, 4, 5, respectively.

A

B

C

D

E

F
1 5

462

3

Your goal is to design an algorithm that fills in the entire cost array (i.e., for all vertices).

(a) Give a linear-time algorithm that works for directed acyclic graphs. (Hint: Handle the
vertices in a particular order.)

(b) Extend this to a linear-time algorithm that works for all directed graphs. (Hint: Recall the
“two-tiered” structure of directed graphs.)

3.26. An Eulerian tour in an undirected graph is a cycle that is allowed to pass through each vertex
multiple times, but must use each edge exactly once.

This simple concept was used by Euler in 1736 to solve the famous Konigsberg bridge problem,
which launched the field of graph theory. The city of Konigsberg (now called Kaliningrad, in
western Russia) is the meeting point of two rivers with a small island in the middle. There are
seven bridges across the rivers, and a popular recreational question of the time was to determine
whether it is possible to perform a tour in which each bridge is crossed exactly once.

Euler formulated the relevant information as a graph with four nodes (denoting land masses)
and seven edges (denoting bridges), as shown here.


