
CS206 Searching

Scala sequences contain a method indexOf(el), which
returns the index of the first element that is equal to el.

If the elements of the list are in no known order, we can only
use sequential search (linear search):

def linear_search(a: Array[Int], x: Int): Int = {

for (i <- 0 until a.length)

if (a(i) == x)

return i

-1

}

What is the running time of linear search?
Best case? Worst case? Average case?

CS206 Searching a sorted sequence

Given an array a with a non-decreasing sequence of integers.

5 7 13 13 13 39 59 59 60 75 99 99 197

Can we do better if the list is sorted?

We can stop as soon as we find an element larger than x:

def sorted_linear_search(a: Array[Int], x: Int) = {

for (i <- 0 until a.length) {

if (a(i) == x)

return i

if (a(i) > x)

return -1

}

-1

}

But worst case running
time is still O(n).

CS206 Searching a sorted sequence

If x is not in the list, we get more information: we actually
know the index where x needs to be inserted.

Given an array a with a non-decreasing sequence of integers.

5 7 13 13 13 39 59 59 60 75 99 99 197

Given x, find the smallest index i such that a(i) ≥ x.

If all elements of a are smaller than x, return a.length.

def sorted_linear_search(a: Array[Int], x: Int) = {

for (i <- 0 until a.length)

if (a(i) >= x)

return i

a.length

}

CS206 Binary Search

Binary search: a recursive solution. Compare x with the middle
element of a, and recursively search in the left or the right half.

Like searching in a dictionary or telephone book.



CS206 Binary search

Precondition: a(k) < x for k < i and a(k) ≥ x for k > j.
Output is in {i, . . . j + 1}
def find(x: Int, a: Array[Int], i: Int, j: Int) {

if (j < i) return i

val mid = (i + j) / 2

if (a(mid) < x)

find(x, a, mid+1, j)

else

find(x, a, i, mid-1)

}

Note: base case is not a sublist of size 1, but of size 0 (when
j = i− 1).

def find(x: Int, a: Array[Int]): Int =

find(x, a, 0, a.length-1)

Can we replace mid+1

by mid?

CS206 Binary search — iterative version

def find(x: Int, a: Array[Int]): Int = {

var i = 0

var j = a.length - 1

while (i <= j) {

// a(k) < x for k < i and a(k) >= x for k > j

val mid = (i + j) / 2

if (a(mid) < x)

i = mid + 1

else

j = mid - 1

}

i

}

Note: It was easy to convert the recursive version because it
used tail recursion.

Loop invariant


