KAIST CS206

Recursion

“Recursion” means to define something in terms of itself.

A directory is a collection of files and directories.

Words in dictionaries are defined in terms of other words.

KAIST €5206 How to print a number in any base

What is 83790 in base 87

It's easy to find the last digit of a number n in
base 8: It's simply n % 8.

The remaining digits are then the representation of
n / 8.

def printBase8(n: Int) {

by

if (n >= 8)
printBase8(n / 8)
print(n % 8)

KAIST CS206

Recursion

"In order to understand recursion, one must
first understand recursion.”
— Anonymous

KAIST €5206 Why it works

We prove that printBase8 is correct by induction on
k, the number of digits of n in base 8.

Base Case: If £ =1, then n < 8, and printBase8
prints one digit correctly.

Inductive Step: Let kK > 1, so n > 8. We make the
inductive assumption that printBase8 works
correctly for numbers with less than £ digits. If we
call printBase8(n), then it recursively calls
printBase8(n/8). But n/8 has k — 1 digits in

base 8, so this works correctly. Finally, the last digit is
printed. It follows that printBase8 prints n correctly.

KAIST CS206

Improved version

val DIGIT_TABLE
val MAX_BASE

"0123456789%abcdef"
DIGIT_TABLE.length

// Print n in any base, recursively
// Precondition: n >= 0, 2 <= base <= MAX_BASE
def printIntRec(n : Int, base : Int)
{

if (n >= base)

printIntRec(n / base, base)

val digit = n % base

print (DIGIT_TABLE(digit))
}

KAIST CS206

Factorial

Factorial: n!isn x (n — 1)!.

// Evaluate n!

def factorial(n : Int) : Long = {
if (n <= 1) // base case
1
else

n *x factorial(n - 1)

KAIST CS206

Correctness of recursive methods

When arguing about the correctness of a recursive
method, always assume that the recursive call works.

Of course there has to be a base case.

And we need to be sure that we will reach the base
case—there has to be some progress in each recursive
call.

KAIST €5206 Mistakes
Why doesn't this work?
def factorial(n : Int) : Long = {
n * factorial(n - 1)
}
And this one?
def factorial(n : Int) : Long = {

if (n <= 1)
1

else
n * factorial(n)

// base case

KAIST CS206

Recursive drawings

Ruler

Fractal star

H-Tree
.|.|.|.|.|.|.|.|.|.|.|.|.|.|.|.‘.|.|.|.|.|.|.|.|.|.I.|.|.|.|.|.‘.|.
T S A S
A L
* I~ ey T
S I
"TTETT“TTETT" EJ_E M M M
KAIST CS206

Too much recursion

The Fibonacci numbers Fyy, Iy, F5, ... are defined as follows:
Fo=0,Fi=1,and F; =F; 1+ F;_5 fori > 1.

def fib(n : Int) : Long = {
if (n == 0) // base cases
0
else if (n == 1)
1
else

fib(n - 1) + fib(n - 2)

Recursion is not useful when recursive calls duplicate work.
Don't solve the same subproblem in separate recursive calls.

KAIST CS206

A recursive definition: trees

A tree consists of a root and zero or more subtrees,
each of whose roots are connected to the root.

root

Each edge goes from the parent to the child.

KAIST CS206

Three poles, n discs.

Towers of Hanoi

One move: take the top disc from one pole and move it to
another pole.

Goal: Move all discs from pole A to pole B.

