
CS206 Tokenizing and Parsing

Let’s program a calculator:

Welcome to KAIST SuperCalculator!

> 3 * (5 + 7 * 2) + 30 * 2 / 15

==> 61

> 110 - (23 + 12) * (15 - 12)

==> 5

CS206 Tokenization (Lexical Analysis)

(abc12+27 * 23.0(12abc34

Symbol: (

Identifier: abc12

Symbol: +

Number: 27.0
Symbol: *

Number: 23.0
Symbol: (

Number: 12.0
Identifier: abc34

Stop.

Note: Tokenizer knows nothing about
the syntax of expressions or the
programming language.

Tokenization means to partition the input string or text file
into tokens (smallest meaningful units) such as numbers,
identifiers, and operators.

Whitespace (spaces, line feeds, tabs) is
already removed by tokenization.

CS206 Tokens

We need four kinds of tokens:
• Number constants, such as 12 or 34.56;
• Variable names (“identifiers”), such as abc12;
• Operators (usually one-letter), such as +, *, or (;
• a stop token (end of input).

We use the following rules:
• Whitespace is skipped;
• A number is a string of digits with possibly a decimal point;
• an identifier starts with a letter or ’ ’, and consists of

letters, digits, and underscores;
• anything else is a one-letter symbol token.

CS206 Recursive descent parsing

An expression is a sum (with + or -) of terms.
A term is a product (with * or /) of items.
An item is either a number, or a variable name, or an
expression enclosed in parentheses.

For each syntactical element (that is, “expression”, “term”,
and “item”) we write a method to parse it.

Since parseExpression calls parseTerm, parseTerm calls
parseItem, and parseItem may call parseExpression, recursive
descent parsing automatically leads to indirect recursion.

If you want to understand indirect recursion, please see the
next slide.



CS206 Indirect recursion

For an explanation of indirect recursion, please see the previous
slide.

Sine and cosine can be computed using the following identities:

sinx = 2 sin
x

2
cos

x

2

cosx = 1− 2(sin
x

2
)2

Your computer uses indirectly recursive methods
sin(x: Double) and cos(x: Double) that compute sinx
and cosx using these identities. The base case occurs when x
is so small that a direct approximation is possible.


