
Linked lists and the List class

Otfried Cheong

1 Linked lists

So far, the only container object we used was the
array. An array is a single object that contains ref-
erences to other objects, possibly many of them. Its
disadvantage is that its size is fixed. It is expensive
to extend an array, to insert elements in the middle,
or to remove an element from the sequence.

A linked list is a container that consists of many
small objects called nodes that are linked together.
Here is a Node class for a list of String objects:

class Node(val head:String,val tail:Node)

Note that this is a recursive definition: A Node

contains a reference to an element (called head, a
String object), and a reference to another Node

object, the tail of the list.

Here is how we could create a short list with three
strings:

scala> var l = new Node("apples", null)

scala> l = new Node("oranges", l)

scala> l = new Node("strawberries", l)

scala> l.head

res1: String = strawberries

scala> l.tail.head

res2: String = oranges

scala> l.tail.tail.head

res3: String = apples

scala> l.tail.tail.tail

res4: Node = null

Here is a function that will display all the ele-
ments of a list:

def displayList(L: Node) {

if (L != null) {

println(L.head)

displayList(L.tail)

}

}

Since Node was defined recursively, it is natural to
display the list using a recursive function. Here is
the output:

scala> displayList(l)

strawberries

oranges

apples

To create interesting lists, let us write a function
that will read lines from a file and put them in a
list:

def readWords(fname: String): Node = {

val F = Source.fromFile(fname)

var list: Node = null

for (line <- F.getLines()) {

list = new Node(line, list)

}

list

}

Note that the list will contain the lines of the files
in reverse order, since every line is added to the
beginning of the list. It is possible to build a list in
the correct order, but that’s a topic for later.

Lists should have some useful methods, so let us
add a length method and a display method to
the Node class:

class Node(val head:String,val tail:Node) {

def length: Int = {

if (tail == null) 1

else 1 + tail.length

}

def display() {

println(head)

if (tail != null) tail.display()

}

}

We can now determine the length of a list L as
L.length, and display it using L.display().

There are two problems with this setup: First,
we represent the empty list using the null value.
But that means that L.length and L.display()

will throw a NullPointerException when L is an
empty list! Second, it turns out that for long lists,
both L.length and L.display() will cause a stack
overflow, because the recursion becomes too deep

1



(the depth of the recursion is the same as the length
of the list).

We can solve the second problem by rewriting
the two methods using a loop, without recursion:

class Node(val head:String,val tail:Node) {

def length: Int = {

var p = tail

var count = 1

while (p != null) {

count += 1

p = p.tail

}

count

}

def display() {

var p = this

while (p != null) {

println(p.head)

p = p.tail

}

}

}

2 An empty list object

For the first problem, we need to give up the use of
the null value. We create a singleton object that
we can use to represent the empty list:

object Empty {

def length: Int = 0

def display() = ()

}

But now we have a problem: What is the type of a
list variable? A list variable could either contain a
reference to the Empty singleton, or a reference to
a Node object. Those have two different types!

The solution is to create a List trait:

trait List {

def head: String

def tail: List

def length: Int

def display(): Unit

}

This trait shows that any List object must provide
methods to access the head, the tail, and the length
of the list, and must be able to display the list.

The Empty singleton and the Node class imple-
ment the List trait. This is indicated using the
extends keyword:

object Empty extends List {

def length: Int = 0

def head: String =

throw new NoSuchElementException

def tail: List =

throw new NoSuchElementException

def display() = ()

}

class Node(val head: String,

val tail: List) extends List {

def length: Int = 1 + tail.length

def display() {

println(head)

tail.display()

}

}

Note how much simpler the two methods have be-
come, since we do not need any special treatment
for the empty list.

Our readWords function now needs only a small
change: We need to initialize the variable list to
the empty list Empty:

def readWords(fname: String): List = {

val F = Source.fromFile(fname)

var list: List = Empty

for (line <- F.getLines()) {

list = new Node(line, list)

}

list

}

Note that we really have to indicate the type List

of the list variable. If we omit it, Scala will infer
that list has type Empty, and we will not be able
to assign a Node object to list.

3 Type parameters

This section contains a tricky point about covari-
ance of type parameters. This is not required learn-
ing for the course and will not be on the exam!

As for our GrowArray, we can add a type param-
eter to the List trait so that we can have lists of
any kind of object. What makes this a bit more
complicated is the fact that a singleton object can-
not have a type parameter. We therefore need to
use the same Empty object for lists of all types. So
what List trait should Empty implement? It turns
out the the right answer is List[Nothing]:

2



trait List[+T] {

def length: Int

def head: T

def tail: List[T]

def display(): Unit

}

object Empty extends List[Nothing] {

def length: Int = 0

def head: Nothing =

throw new NoSuchElementException

def tail: List[Nothing] =

throw new NoSuchElementException

def display() = ()

}

class Node[T](val head: T,

val tail: List[T]) extends List[T] {

def length: Int // as before

def display() // as before

}

When we initialize a list variable to the empty list,
we write code like this:

var L: List[String] = Empty

Even though the object Empty is of type
List[Nothing], it is legal to assign it to a vari-
able of type List[String]. This is true because
(a) Nothing is a subtype of every type, in particu-
lar of String, and (b) the +T in the type parameter
of List makes List covariant in the type parame-
ter T. This means that if X is a subtype of Y, then
List[X] is a subtype of List[Y]. So as a result,
List[Nothing] is a subtype of List[String].

What is a subtype? A type X can be declared a
subtype of a type Y if it implements all the methods
of type Y in a compatible way. For instance, if X is a
class that implements a trait Y, then X is a subtype
of Y. When X is a subtype of Y, then it is legal to
assign objects of type X to a variable of type Y.

4 The Scala List class

Fortunately, we don’t need to worry about defining
our own list class and its type parameters, because
Scala already provides a nice List class that is very
much like the class we have just created. In partic-
ular, it represents an immutable list. Here is how
we can rewrite our readWords function using Scala
List:

def readWords(fn:String): List[String] ={

val F = Source.fromFile(fn)

var list: List[String] = Nil

for (line <- F.getLines()) {

list = line :: list

}

list.reverse

}

The name of the empty list singleton is Nil (as
in Scheme). We construct nodes of the list using
the :: operator:

scala> val A = 1 :: Nil

A: List[Int] = List(1)

scala> val B = 1 :: 2 :: 3 :: Nil

B: List[Int] = List(1, 2, 3)

scala> val C = "Otfried" :: "Jungwoo" ::

"Youngwoon" :: Nil

C: List[String] =

List(Otfried, Jungwoo, Youngwoon)

The :: operator is pronounced cons, just as in
Scheme.

As you can see, Scala displays the list
1 :: 2 :: Nil as List(1,2). You can create lists
with this syntax as well (similar to arrays):

scala> val D = List(’a’,’b’,’c’)

D: List[Char] = List(a, b, c)

In fact, to create an empty list it is better to write
List() instead of Nil, since it gives the type we
usually want:

scala> var s = Nil

s: object Nil = List()

scala> var t = List()

t: List[Nothing] = List()

As in our own list, the first element of a list is its
head, the remainder of the list is its tail:

scala> C.head

res1: String = Otfried

scala> C.tail

res2: List[String] =

List(Jungwoo, Youngwoon)

The operation ::: concatenates two lists:

scala> B ::: (5 :: A)

res3: List[Int] = List(1, 2, 3, 5, 1)

You can convert lists to arrays, and vice versa:

3



scala> D.toArray

res4: Array[Char] = Array(a, b, c)

scala> val E = Array(1, 2, 3, 4)

E: Array[Int] = Array(1, 2, 3, 4)

scala> E.toList

res5: List[Int] = List(1, 2, 3, 4)

Lists have many methods in common with arrays,
for instance (L is a list):

• L.length

• L.isEmpty

• L.nonEmpty

• L drop n

• L dropRight n

• L take n

• L splitAt n, which returns a pair consisting
of L take n and L drop n

• L.mkString

• L.mkString(separator)

• L.mkString(prefix, separator, suffix)

• L.reverse

• L.sorted

5 Pattern matching

The :: operator can also be used as a pattern. For
instance, we can decompose a list into its first two
elements and the rest of the list:

scala> val F = List(1, 2, 3, 4, 5, 6)

scala> val el1 :: el2 :: rest = F

el1: Int = 1

el2: Int = 2

rest: List[Int] = List(3, 4, 5, 6)

If the pattern does not match, an exception is
thrown:

scala> val G = List(’a’)

G: List[Char] = List(a)

scala> val el1 :: el2 :: rest = G

scala.MatchError: List(a)

Patterns can also be used inside the cases of a
match block:

def length(L: List[String]): Int = {

L match {

case Nil => 0

case el :: rest => 1 + length(rest)

}

}

def display(L: List[String]) {

L match {

case Nil =>

case el :: rest =>

println(el); display(rest)

}

}

Note how the pattern matching here nicely takes
care of both distinguishing the two cases and ex-
tracting the head and tail of the list.

Let us study some more examples. Here is a func-
tion take(L, n), that does the same as L take n:

def take(L: List[String], n: Int):

List[String] = {

if (n <= 0)

Nil

else

L match {

case Nil => Nil

case x :: xs => x :: take(xs, n-1)

}

}

And the same for drop(L, n):

def drop(L: List[String], n: Int):

List[String] = {

if (n <= 0)

L

else

L match {

case Nil => Nil

case x :: xs => drop(xs, n-1)

}

}

What about concatenating two lists? Again we
can express it recursively:

def concat(L1: List[String],

L2: List[String]):

List[String] = {

L1 match {

case Nil => L2

case x :: xs => x :: concat(xs, L2)

}

}

And now for something more interesting: As-
sume we have a list that is sorted in increasing
order, and we want to insert a new element into
this list. Again, we can write this as a recursive
function:

4



def insert(L: List[String], x: String):

List[String] = {

L match {

case Nil => List(x)

case y::ys => if (x < y) x :: L

else y :: insert(ys, x)

}

}

But this means we can now sort lists!

def sort(L:List[String]):List[String] = {

L match {

case Nil => Nil

case x :: xs => insert(sort(xs), x)

}

}

6 Function objects

We have seen how to define functions and methods
using the def keyword. Such a method is compiled
to some code with the given name.

In Scala, it is also possible to create function ob-
jects without giving it a name. A function object
is an object that can be used like a function (that
is, it has an apply method).

Here is a simple example:

scala> (x: Int) => x + 1

res1: (Int) => Int = <function1>

Here we have created a function object that takes
one Int argument and returns the argument plus
one. The type of the object is (Int) => Int. A
function object can be used like a function:

scala> val f = (x: Int) => x + 1

f: (Int) => Int = <function1>

scala> f(3)

res1: Int = 4

scala> f(7)

res2: Int = 8

scala> f(9)

res3: Int = 10

We can make this even more interesting. In the
following function object g, the function definition
makes use of a variable more:

scala> var more = 5

more: Int = 5

scala> val g = (x: Int) => x + more

g: (Int) => Int = <function1>

scala> g(4)

res1: Int = 9

scala> g(10)

res2: Int = 15

But what happens if we change the value of more?
The answer is that the behavior of the function ob-
ject changes as well:

scala> more = 10

more: Int = 10

scala> g(4)

res3: Int = 14

scala> g(10)

res4: Int = 20

We say that the variable more is a free variable of
the function object. The behavior of a function
object depends not only on its arguments, but also
on its free variables.

7 Higher-Order methods

When working with lists, there are many common
functions that can be implemented as a for-loop:

scala> for (e <- C)

| println(e)

Otfried

Jungwoo

Youngwoon

Higher-order methods allow us to concentrate on
the interesting part of this loop, namely the print
statement:

scala> C.foreach((x: String) => println(x))

Otfried

Jungwoo

Youngwoon

The foreach method is called a higher-order
method because its argument is itself a function
object. In a sense, foreach is a “meta-function”
that works on other functions.

The code above can be simplified, because the
Scala compiler knows that the argument of foreach
has to be a function object. Therefore we are al-
lowed to omit the type of the argument:

5



scala> C.foreach((x) => println(x))

Otfried

Jungwoo

Youngwoon

In this case, there is only one argument, and so we
are even allowed to remove the parentheses:

scala> C.foreach(x => println(x))

Otfried

Jungwoo

Youngwoon

As a final simplification, when the function object
has only a single argument and this argument is
only used once in the result expression, we can omit
the x => part completely and replace the parameter
by an underscore:

scala> C.foreach(println(_))

Otfried

Jungwoo

Youngwoon

Many operations on list that would normally use
a for-loop can be written using foreach. For in-
stance, we can compute the sum of all elements in
a list like this:

scala> B

res1: List[Int] = List(1, 2, 3)

scala> var sum = 0

sum: Int = 0

scala> B.foreach(sum += _)

scala> sum

res2: Int = 6

Here are the most important higher-order meth-
ods of lists:

• L.foreach(f) calls f(e) for each element e of
L;

• L.exists(f) returns true if for some element
e of L the function f(e) returns true;

• L.forall(f) returns true if for all elements e

of L the function f(e) returns true;
• L.count(f) returns the number of elements e

of L for which the function f(e) returns true;
• L.filter(f) returns a list consisting of those

elements e of L for which the function f(e)

returns true;
• L.filterNot(f) is the same as
L.filter(e => !f(e)).

• L.map(f) returns a new list containing the el-
ements f(a), f(b),..., where a,b,... are
the elements of L.

• L.sortWith(f) sorts the list using f as the
comparison function. f(a,b) takes two list el-
ements and returns true if a should come be-
fore b in the sorted order.

For instance:

scala> val words =

Source.fromFile("words.txt").

getLines().toList

words = List(aa, aah, aahed, ...)

scala> words filter (_ contains "issis")

res1 = List(missis, missises, narcissism,

narcissisms, narcissist, narcissists)

scala> words count (_.length > 20)

res2: Int = 3

scala> words exists (_ startsWith "kw")

res3: Boolean = true

As a final example, here is a program to compute
prime numbers:

val n = args(0).toInt

val sqrtn = math.sqrt(n).toInt

var s = (2 to n).toList

while (s.head <= sqrtn) {

print(s.head + " ")

s = s.tail filter (_ % s.head != 0)

}

println(s.mkString(" "))

In Scala, higher-order methods are not only avail-
able for lists, but also for arrays, strings, and in fact
any sequence.

6


	Linked lists
	An empty list object
	Type parameters
	The Scala List class
	Pattern matching
	Function objects
	Higher-Order methods

