KAIST CS206

Each node of the list is a separate object:

Linked lists

class Node:
def __init__(self, el, next=None):
self.el = el
self .next = next

>>> a = Node(13)

>>> b = Node(27, a)

>>> ¢ = Node(99, b)

>>> c.el

99

>>> c.next.el

27

>>> c.next.next.el

13

KAIST €5206 Basic list methods

Add an element at the front of the linked list:
def prepend(self, el)

Remove the first element:
def remove_first(self)

Insert an element after node:
def insert_after(self, node, el)

Remove element after node:
def remove_after(self, node)

Find element before node:
def before(self, node)

Find last node:
def last(self)

KAIST €5206 Linked List

Let's make a class for a linked list. It contains a reference to
the front of the list:

class LinkedList:
def __init__(self):
self._front = None

def first(self):
if self._front is None:
raise EmptyListError
return self._front

def is_empty(self):
return self._front is None

KAIST CS206

To compute the length of the linked list, or to display the list,
we need to traverse the entire list

def __len__(self):
if self.is_empty():
return O
p = self._front
count = 0

while p is not None:

Linked list traversal

count += 1
p = p.next
return count



KAIST CS206

Appending to the list takes time linear in the length of the list.

Linked list with fast append

To speed this up, the list needs to store a reference to both the
first and last node of the list:

class LinkedList:
def __init__(self):

self._front = None
self._rear = None

Now append is fast and easy:
def append(self, el)

But we have to be careful with all our other methods. ..
The rear field must be updated by every method of the
LinkedList class.

KAIST €5206 Doubly-linked lists

If we want to be able to quickly search a list both forward and
backward, we need a doubly-linked list.

front rear

Emmmmm%

class Node:
def __init__(self, el, next=None, prev=None):
self.el = el
self .next = next
self.prev = prev

KAIST CS206

Remember the Queue ADT?

Linked Queues

® enqueue
e dequeue
e front

e is_empty

We can implement this as a linked list with fast append:

e enqueue appends at the rear of the list,
e dequeue removes from the front of the list.

Now you know why the two ends of a queue are called front
and rear. ..

KAIST CS206

In doubly-linked lists, the code for inserting and removing
elements needs to handle the case where the node is the first
node and/or the last node separately.

Sentinels

We can simplify the code by using sentinel nodes. Sentinel
nodes are “guarding’ the two ends of the list, so that no
special handling is necessary. Sentinel nodes do not contain
elements. When we create an empty list, we automatically
create the two sentinel nodes, which cannot be deleted.

front rear

E P N e N o A o B > %




KAIST 5206 The Josephus Game

Given n player sitting in a circle, and a number m.

A hot potato starts at player 1, and is passed around m times.
The player holding the potato then is eliminated, the next

player gets the potato, and the game continues until only one
player is left.

n==6m=2

KAIST C5206 What data structure to use?

We need a data structure to store the circle of people.

Required methods:
e Pass the potato to the next person.
e Delete the person holding the potato.

A doubly linked list does it all. A circular linked list would be
even better, but we can simulate that easily.

KAIST 5206 The Josephus Game

Given n player sitting in a circle, and a number m.

A hot potato starts at player 1, and is passed around m times.
The player holding the potato then is eliminated, the next

player gets the potato, and the game continues until only one
player is left.

n==6,m=2

(D—B)



