KAIST CS206

A data type (also called abstract data type or ADT) defines
the operations and behavior supported by an object.

Data types and data structures

A data type is a concept, similar to mathematical concepts
such as function, set, or sequence.

Examples of data types are Stack, Queue, Set, Dictionary.

A data structure is an implementation of a data type: An
object that provides all the operations defined by the data
type, with the correct behavior.

We often have multiple, different implementations for the same
data type: Stacks can be implemented with arrays or with
linked lists, sets can be implemented with search trees or with
hash tables.

KAIST CS206

Let’s build a day calculator for determining the number of days
between dates, or the 1000th day after a given day, etc.

Day calculator

> 2015/03/20

2015/03/20 is a Friday

> 1992/03/21

1992/03/21 is a Saturday

> 1995/12/01 2015/03/20

There are 7049 days between 1995/12/01 & 2015/03/2(
> 2015/03/20 2014/08/24

There are -208 days between 2015/03/20 & 2014/08/2¢
> 1995/12/01 + 100

1995/12/01 + 100 days = 1996/03/10

> 2015/03/20 - 1000

2015/03/20 - 1000 days = 2012/06/23

KAIST C5206 Book definition

An abstract data type is a programmer-defined data type that
specifies a set of data values and a collection of well-defined
operations that can be performed on those values.

Abstract data types are defined independent of their
implementation.

e We can focus on solving the problem instead of the
implementation details.

e Reduce logical errors by preventing direct access to the
implementation.

e Implementation can be changed.

e Easier to manage and divide larger programs into smaller
modules.

KAIST 5206 ADT for dates

We need an ADT to store a date. We specify it like this:

Date(yr, m, d) create a new date object.

day () return the day.

month () return the month.

year () return the year.

dayOfWeek () return the day of the week as a number 0...6

(0 is Monday).

e numDays (otherDate) return the number of days between
the two dates.

e advanceBy(n) return date n days further (or earlier, if n is

negative).

We also want to compare dates, and have a nice string
representation.

KAIST CS206

Client code

Since we have a fully specified Date ADT, we can start by
writing the client code.

>>> from date import Date
>>> a = Date(1996, 9, 3)

>>> b = Date(2015, 9, 8)

>>> a.numDays (b)

6944

>>> print(a.advanceBy(7000))
2015/11/03

KAIST CS206

Imagine an application, where we need to store millions of
Date objects.

Another implementation?

We should make Date as small as possible—ideally store only
a single number.

class Date():
def init__(self, year, month, day):

self._jday = _toJulianDay(year, month, day)

The methods year, month, day get harder now, but numDays
and day0OfWeek get easier. ..

def dayOfWeek(self):
return self._jday % 7
def numDays(self, otherDate):
return otherDate._jday - self._jday

KAIST CS206

class Date():
def __init__(self, year, month, day):
self._year = year
self._month = month

self._day = day

Implementing the Date class

For the dayOfWeek, numDays, and advanceBy methods we
need to convert to and from Julian day number.

def dayOfWeek(self):
jday = self._toJulianDay()
return jday % 7

def numDays(self, otherDate):
return otherDate._toJulianDay() -
self._toJulianDay()

KAIST 5206 Equality and Ordering
We want to compare dates using all the standard operators
==! <1 <=, >=1 >1 !='

def __eq__(self, rhs):
return self._jday == rhs._jday

def __1t__(self, rhs):
return self._jday < rhs._jday

def __le__(self, rhs):
return self._jday <= rhs._jday

KAIST CS206

Our class does not recognize invalid dates:

> 2015/02/29

2015/02/29 is a Sunday

> 2015/09/31

2015/09/31 is a Thursday
> 2015/13/00

2015/13/00 is a Thursday
> 2015/13/01 - 1

Invalid dates

2015/13/01 - 1 days = 2015/12/31
> 2015/12/00 + 1
2015/12/00 + 1 days = 2015/12/01

> 2015/02/29 2015/03/01
There are O days between 2015/02/29 and 2015/03/01

KAIST CS206

Catching exceptions

We need to catch the exception and report the error to the
user:
s = input("> ")
f = s.split()
try:
if len(f) ==
return
elif len(f) == 1:
show_weekday (f [0])
elif len(f) ==
show_difference(f[0], f[1])
omitted
except ValueError as e:
print(e)

KAIST CS206

Recognizing invalid dates is easy: convert to day number and
back—if it's not equal, it's invalid.

Handling invalid dates

But how to report the error? The __init__ method must
return a Date object!

Solution: raise an exception

def __init__(self, year, month, day):
jday = _toJulianDay(year, month, day)
y, m, d = _jdayToYMD(jday)
if y != year or m !'= month or d != day:
raise ValueError("Invalid Gregorian date")

self._jday = jday

But now the program crashes when we use an invalid date. ..

KAIST €5206 Exceptions simplify our error handling
We can now also handle the incorrect date formats using
exceptions.

This simplifies the entire days program: We no longer need to
check the result of get_date every time we call it.

def show_weekday(s):
day = get_date(s)
print(day, "is a", dayNames[day.dayOfWeek()])

def show_difference(sl, s2):
dayl = get_date(sl)
day2 = get_date(s2)
print ("There are", dayl.numDays(day2),
"days between", dayl, "and", day2)

