
CS206 Data types and data structures

A data type (also called abstract data type or ADT) defines
the operations and behavior supported by an object.

A data type is a concept, similar to mathematical concepts
such as function, set, or sequence.

A data structure is an implementation of a data type: An
object that provides all the operations defined by the data
type, with the correct behavior.

We often have multiple, different implementations for the same
data type: Stacks can be implemented with arrays or with
linked lists, sets can be implemented with search trees or with
hash tables.

Examples of data types are Stack, Queue, Set, Dictionary.

CS206 Book definition

An abstract data type is a programmer-defined data type that
specifies a set of data values and a collection of well-defined
operations that can be performed on those values.

Abstract data types are defined independent of their
implementation.

• We can focus on solving the problem instead of the
implementation details.

• Reduce logical errors by preventing direct access to the
implementation.

• Implementation can be changed.

• Easier to manage and divide larger programs into smaller
modules.

CS206 Day calculator

Let’s build a day calculator for determining the number of days
between dates, or the 1000th day after a given day, etc.

> 2015/03/20

2015/03/20 is a Friday

> 1992/03/21

1992/03/21 is a Saturday

> 1995/12/01 2015/03/20

There are 7049 days between 1995/12/01 & 2015/03/20

> 2015/03/20 2014/08/24

There are -208 days between 2015/03/20 & 2014/08/24

> 1995/12/01 + 100

1995/12/01 + 100 days = 1996/03/10

> 2015/03/20 - 1000

2015/03/20 - 1000 days = 2012/06/23

CS206 ADT for dates

We need an ADT to store a date. We specify it like this:

• Date(yr, m, d) create a new date object.
• day() return the day.
• month() return the month.
• year() return the year.
• dayOfWeek() return the day of the week as a number 0...6

(0 is Monday).
• numDays(otherDate) return the number of days between

the two dates.
• advanceBy(n) return date n days further (or earlier, if n is

negative).

We also want to compare dates, and have a nice string
representation.

CS206 Client code

Since we have a fully specified Date ADT, we can start by
writing the client code.

>>> from date import Date

>>> a = Date(1996, 9, 3)

>>> b = Date(2015, 9, 8)

>>> a.numDays(b)

6944

>>> print(a.advanceBy(7000))

2015/11/03

CS206 Implementing the Date class

class Date():

def __init__(self, year, month, day):

self._year = year

self._month = month

self._day = day

For the dayOfWeek, numDays, and advanceBy methods we
need to convert to and from Julian day number.

def dayOfWeek(self):

jday = self._toJulianDay()

return jday % 7

def numDays(self, otherDate):

return otherDate._toJulianDay() -

self._toJulianDay()

CS206 Another implementation?

Imagine an application, where we need to store millions of
Date objects.

We should make Date as small as possible—ideally store only
a single number.

class Date():

def __init__(self, year, month, day):

self._jday = _toJulianDay(year, month, day)

The methods year, month, day get harder now, but numDays
and dayOfWeek get easier. . .

def dayOfWeek(self):

return self._jday % 7

def numDays(self, otherDate):

return otherDate._jday - self._jday

CS206 Equality and Ordering

We want to compare dates using all the standard operators:
==, <, <=, >=, >, !=.

def __eq__(self, rhs):

return self._jday == rhs._jday

def __lt__(self, rhs):

return self._jday < rhs._jday

def __le__(self, rhs):

return self._jday <= rhs._jday

CS206 Invalid dates

Our class does not recognize invalid dates:

> 2015/02/29

2015/02/29 is a Sunday

> 2015/09/31

2015/09/31 is a Thursday

> 2015/13/00

2015/13/00 is a Thursday

> 2015/13/01 - 1

2015/13/01 - 1 days = 2015/12/31

> 2015/12/00 + 1

2015/12/00 + 1 days = 2015/12/01

> 2015/02/29 2015/03/01

There are 0 days between 2015/02/29 and 2015/03/01

CS206 Handling invalid dates

Recognizing invalid dates is easy: convert to day number and
back—if it’s not equal, it’s invalid.

But how to report the error? The __init__ method must
return a Date object!

Solution: raise an exception

def __init__(self, year, month, day):

jday = _toJulianDay(year, month, day)

y, m, d = _jdayToYMD(jday)

if y != year or m != month or d != day:

raise ValueError("Invalid Gregorian date")

self._jday = jday

But now the program crashes when we use an invalid date. . .

CS206 Catching exceptions

We need to catch the exception and report the error to the
user:

s = input("> ")

f = s.split()

try:

if len(f) == 0:

return

elif len(f) == 1:

show_weekday(f[0])

elif len(f) == 2:

show_difference(f[0], f[1])

omitted

except ValueError as e:

print(e)

CS206 Exceptions simplify our error handling

We can now also handle the incorrect date formats using
exceptions.
This simplifies the entire days program: We no longer need to
check the result of get_date every time we call it.

def show_weekday(s):

day = get_date(s)

print(day, "is a", dayNames[day.dayOfWeek()])

def show_difference(s1, s2):

day1 = get_date(s1)

day2 = get_date(s2)

print("There are", day1.numDays(day2),

"days between", day1, "and", day2)

