
CS206 234-Trees

In a perfect binary tree, all leaves are on the same level . . .

. . . but this is only possible for n = 2h − 1.

Idea: If we allow different number of children, then we can
always have all leaves on the same level.

CS206 234-Trees

• A node contains one, two, or three elements.
• If an internal node contains k elements e1, . . . , ek, then it

has k + 1 subtrees T0, . . . , Tk.
• Order condition: Keys in subtree Ti are larger than key of

ei and smaller than key of ei+1.
• All leaves have the same depth.

And so a 234-Tree storing n elements has height at
most log n+ 1.

Searching in a 234-Tree is more complicated than in a binary
search tree, and needs one or two comparisons per node.

A 234-Tree of height h has how many nodes?

CS206 Bottom-Up Insertions

If node v now has at most three elements, we are done.

Otherwise, v now has four elements—an overflow. Split v into
two nodes v1 and v2 with two elements each.

First, find the leaf node v where the new key belongs.

Add new element in node v.

But now the parent z of v needs to have a new element to
allow one more subtree. Move first element of v2 into z.

Now z may overflow. Recursively split z and proceed up the
tree.

Example: Insert 4, 6, 12, 15, 3, 5, 10, 8, 11, 17.

CS206 Top-Down Insertions

Avoid recursive walk back up the tree.

While searching for the right insertion place, split nodes that
have three elements.

So when we reach the leaf node, we can simply insert the
element (no overflow can happen).

This can easily be implemented as an iterative procedure.

Example: Insert 4, 6, 12, 15, 3, 5, 10, 8, 11, 17.



CS206 Top-Down Deletions

If the element to be deleted is not in a leaf, delete the next
higher element instead (it is always in a leaf).

While going down the tree, modify all nodes v that contain
only one element (except for the root).
Finally, delete element to be removed from the leaf.

• First try to steal an element from a sibling of v. The node
v becomes a 2-element node.

• If siblings have only one element, perform a fusion of the
elements from the sibling and a key from the parent. The
node v becomes a 3-element node.

Example: Delete 3, 4, 12, 13, 14.

• During a fusion operation, the height of the tree can
decrease by one.

CS206 Red-black trees

Since binary search trees are easier to search than 234-trees,
we can implement our 234-tree as a binary search tree, using
just one extra bit for each node.

• Each node is either red or black,
• the root is black,
• the children of a red node are black,
• any path from the root to an empty subtree contains the

same number of black nodes.

Searching a red-black tree is completely the same as searching
a binary search tree.

Insertions and deletions can be described by rotations and
color changes.


