
CS109 Variables without contents

In Python, a variable can have the special value None to
indicate it has no value. A function can return None to
indicate no result was found (perhaps because of an error).

In Java and Scala, a variable can have the special value null,
and functions can return null. For instance, when you create
an array, all its slots contain null.

However, you cannot perform any operation on null values, so
if you forget to handle this case, you get a
NullPointerException.

Kotlin does not normally allow null as a value.

You can use null for variables of nullable type.

CS109 Nullable types

Put a ? behind the type name to make it nullable:

>>> var s: String? = "CS109"

>>> println(s)

CS109

>>> s = null

>>> println(s)

null

>>> s = "I’m a nullable string"

>>> println(s)

I’m a nullable string

With nullable types, the only allowed operations are equality
comparisons and string conversion:

>>> if (s == null)

... println("s is empty")

CS109 Working with nullable types

No other methods can be called on a variable of nullable type:

>>> s.length

error: only safe or non-null asserted calls are

allowed on a nullable receiver of type String?

Manually check for null:

>>> fun strlen(s: String?): Int =

if (s == null) 0 else s.length

>>> strlen("Hello")

5

>>> strlen(null)

0

CS109 The ?. operator

Use ?. to call a method, or simply return null:

>>> s

I’m a nullable string

>>> s.length

error: only safe or non-null asserted calls ...

>>> s?.length

21

>>> s?.startsWith("I’m")

true

>>> s = null

>>> s?.length

null

>>> s?.startsWith("I’m")

null



CS109 The Elvis operator ?:

We can get another result by replacing null with another
value using the Elvis operator ?:

>>> fun check(s: String?): Boolean =

s?.startsWith("I’m") ?: false

>>> check("I’m nullable")

true

>>> check("Bah")

false

>>> check(null)

false

CS109 The promise operator !!

We can also promise to the compiler that a value will never be
null:

>>> var sn: String? = "I’m nullable"

>>> var s: String = sn

error: type mismatch

>>> var s: String = sn!!

>>> s

I’m nullable

>>> sn.length

error: only safe or non-null asserted calls

>>> sn!!.length

12

If your program violates the promise, an error will occur when
the promise is executed.

CS109 Example

The Kotlin standard function readLine() returns a String?.

fun reverser() {

var line: String? = readLine()

while (line != null) {

println(line.reversed())

line = readLine()

}

}

println("Enter lines to be reversed:")

reverser()

(Note: this function is different from
org.otfried.cs109.readString.)


